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Abstract. This article presents a new global solution algorithm for Convex Multiplicative Program-
ming called the Outcome Space Algorithm. To solve a given convex multiplicative progtgin (

the algorithm solves instead an equivalent quasiconcave minimization problem in the outcome space
of the original problem. To help accomplish this, the algorithm uses branching, bounding and outer
approximation by polytopes, all in the outcome space of problBp).(The algorithm economizes

the computations that it requires by working in the outcome space, by avoiding the need to compute
new vertices in the outer approximation process, and, except for one convex program per iteration,
by requiring for its execution only linear programming techniques and simple algebra.
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1. Introduction

Consider the Convex Multiplicative Programming problem

P
(Pp) ¢ = minl—[fj(x), st.x € D,

j=1
wherep > 2, f; : %" — N is afinite, convex function foreach=1,2, ..., p,
D is a nonempty, compact convex sefify and, foreachy =1,2,... , p, f;(x) >

0 for all x € D. Problem(Pp) has a number of important applications in various
areas, including, for example, economic analysis [5], bond portfolio optimization
[9], VLSI chip design [19], and multiple objective optimization [4]. It is well
known that the objective function of probleii®,) need not be convex oD,
and that probleniPp) generally possesses many local minima that are not global,
i.e., problem(Pp) is a global optimization problem [10,28]. Furthermore, problem
(Pp) is known to be NP-hard, even in special cases such as when2, D is a
polyhedron, and; is linear for eacty = 1, 2 [13,22].

To solve cases of problerfP,) whenp = 2, quite a large number of exact
global solution algorithms can be used. For instance, whes a polyhedral set
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and f; and f> are linear functions, the various parametric simplex-based methods
of Konno and Kuno [11,12], Konno et al. [15] and Schaible and Sodini [27] can
be used to solve the problem. In addition, for this case two branch and bound
algorithms ([24] and [16]) are available, as are the enumeration, discrete approx-
imation, outer approximation and polyhedral annexation algorithms of Pardalos
[25], Konno and Kuno [10], Aneja et al. [1] and Tuy and Tam [30], respectively.
For the case wherP is compact and convex an and f, are convex functions, at
least three exact global solution algorithms are available for solving profdgm

One of these, an outer approximation method due to Konno et al. [14], applies to
the problem of minimizing the sum &f products of two convex functions each,
which, whenp = 2, includes problen{Pp) as a special case. The other two of
these algorithms, by Kuno and Konno [17] and Thoai [28], use underestimation
and outer approximation, respectively.

Globally solving problem(Pp) for cases wherg > 2 has been shown empir-
ically to generally require significantly more computational effort than the effort
needed for the case whepe= 2 [8,18,26]. To solve probleraPy) whenp > 2, D
is polyhedral andf;, j = 1,2, ..., p, are linear, at least three exact gobal solution
algorithms and one heuristic algorithm are available. The three exact algorithms
are a polyhedral annexation method with dimension reduction due to Tuy [29], a
branch and bound, image-space algorithm by Falk and Palocsay [3] and a branch
and bound algorithm with range reduction developed by Ryoo and Sahinidis [26].
The heuristic algorithm is an efficient point search algorithm due to Benson and
Boger [2].

Three algorithms have been proposed that can solve the Convex Multiplicative
Programming probleniPp) whenp > 2. Sincep is generally much smaller than
n, to obtain computational efficiency, these algorithms all essentially work in the
outcome spac&? rather than in the decision spa®é of problem(Pp). The first
of these algorithms to be proposed, due to Thoai [28], reduces prafdginto
a minimization of a quasiconcave functionif over a convex set. The resulting
problem is then solved by outer approximation. The algorithm of Kuno et al. [18]
uses a different transformation to rewrite probléRy) as a concave minimization
problem in the outcome spad’. This concave minimization problem is then
solved by an outer approximation technique that is specially adapted to its struc-
ture. A third algorithm suitable for problerPp) has recently been proposed by
Jaumard et al. [8]. Using an extension of the transformation in [18], this algorithm
rewrites problen{Pp) as a special quasiconcave minimization problem in outcome
spacen?’. A conical branch and bound algorithm involving the solutior pf+- 1)
nonlinear convex programming problems per iteration is then used to solve this
gquasiconcave minimization problem.

A brief review of algorithms for solving problerqP,) can be found in Benson
and Boger [2]. For a more comprehensive review, see Konno and Kuno [12].

The purpose of this article is to describe and validate a new exact global solution
algorithm that we have developed for solving probléPg). Like its predecessors,
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to enhance its efficiency, the algorithm works essentially in the outcome 8{face

of the problem. In addition, however, it combines branch and bound with outer
approximation in such a way that the new vertices of the polyhedra used in the
outer approximation process need not be explicitly calculated. Furthermore, only
one nonlinear convex program is solved per iteration of the algorithm.

Section 2 shows how problenPf) is converted to a quasiconcave minimiz-
ation problem in outcome space suitable for solution by the new algorithm. The
branching, bounding, and outer approximation operations of the new algorithm are
described in Section 3. Section 4 gives a statement of the algorithm and describes
its convergence properties. Some key computational issues are discussed in Sec-
tion 5. In Section 6, an example problem is solved and, in the last section, some
concluding remarks are given.

2. Conversion to quasiconcave minimization

In this section, we show how to convert problenm®o a quasiconcave minimiz-
ation problem Py) in outcome space. The new branch and bound-outer approxim-
ation algorithm can be applied to problei,{ in order to globally solve problem
(Pp). For a similiar transformation, see [28].

Foreachj =1,2,..., p,lety; € "N satisfy

y; > maxf;(x), stxeD,

wherey; < +oo, and lety” = [$1, J2, ... , 9,]. For eache € %", let[f(x)]” =
[fi(x), fo(x), ..., fp(x)], and define the sét by

Y={yeR’|f(x) <y<yforsomex € D}.

It is easy to show that is a nonempty, compact convex set in the outcome space
97 of problem (Pp). Notice also that the interior &f, denoted int’, is nonempty,
due to the choice of.

Letg : M7 — N be defined for each € NP by

p
g =[] (1)
=1

and consider the outcome space problem
(Py) ming(y), styeY.

The following results give some properties of problefp); LetY,, anddY denote
the set of all extreme points af and the boundary df, respectively.

LEMMA 2.1. Problem (Py) consists of the minimization of a functignthat is
continuous oMi” and quasiconcave on the nonempty, compact convex. set
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Proof. The continuity ofg on%i? follows from (1) and elementary limit results.
As observed earlier, it is easy to show thais nonempty, compact and convex.
From Corollary 2.1 in Benson and Boger [2], sinEes a nonempty convex set
and, foreacly = 1,2, ..., p, the functionz;(y) = y; is positive and concave on
Y, it follows thatg is quasiconcave on. a

Using Lemma 2.1 and the definition &f we obtain the following theorem.

THEOREM 2.1. Problem (Py) has a global optimal solution if¥,,. Any global
optimal solution to problemKy) isin Y.

Proof.From [6], wheng is continuous ofi? and quasiconcave on the nonempty,
compact convex séf, the global minimum of overY is attained at some extreme
point of Y. Together with Lemma 2.1, this proves the first statement of the theorem.

To prove the second statement of the theorem;"lé&ie a global optimal solution
for problem (Py), and suppose, to the contrary, thhat¢ 0Y. Theny* € (intY), so
that we may choose a poifte D such thatf(x) < y* < y. Sincex € D,0 <
f(x). As aresult, if we sef = f(x), it follows thaty € Y and

P P

[15 <1y

j=1 j=1
By the definition (1) ofg, this contradicts the fact that* is a global optimal
solution for problem £y). O

From Theorem 2.1, any global optimal solution to problgp)(must belong to
aY. Although, as we shall see below, problemyj#s equivalent to problemg;),
problem (Pp) neednot have a global optimal solution on the boundarynfFor
instance, lepp =2, D = {(x1,x2)[0< x; <6, j =12},

filxg, x2) = (x1 — 22 + 1

and
fo(x1, x2) = (x2 — 4% + 1

in problem (A). Then the unique global optimal solutiari to problem (B) is
given byx*? = (2, 4) which does not lie on the boundary bf

THEOREM 2.2. Problem (Pp) is equivalent to problemHAy) in the following

sense: Ify* is a global optimal solution for problempy), then anyx* € D

such thatf(x*) < y* is a global optimal solution for problemPy), and¢ =

g(y*) = [T/_; fi(x*). Conversely, ifv* is a global optimal solution for prob-
lem (Pp), theny* = f(x*) is a global optimal solution for problem#), and

¢ =280 =[1j_1 fi(x").
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Proof. Let y* be a global optimal solution for problenP(), and letx* € D
satisfy f(x*) < y*. Assume that for some € D, [/_; f;(x) < []j_; £;(x).
Then, since O< f(x*) < y*, this implies that

p p p
[T1r0 <[Tre <[]y 2
Jj=1 Jj=1 j=1

Lety = f(x). Sincex € D, by the choice ofy, it follows thaty € Y. From
(2), ]_[54’:1 v < ]‘[;’:1 y; is also true. By (1), the latter two statements together
contradict the fact that* is a global optimal solution to problenP¢). Therefore,
the assumption that for somee D, [1/_; f;(x) < [T/, f;(x*) is false, so that
x* is a global optimal solution for problen®?,) and¢ = ]‘[;’:1 fi(x™).

Lety = f(x*). Then, sincey > f(x*) andx* € D, this implies thaty € Y.

If y < y*andy # y* were to hold, then, sincg > 0, by (1),g(3) < g(»*)
would hold, andy* would not be a global optimal solution for problery(). Since
y < y*, this implies thaty = y* must hold. By (1), sincg = f(x*) and¢ =
]_[54’:1 fi(x*), it follows thatg (y*) = ¢.

To show the converse statement,déte a global optimal solution for problem
(Pp), and lety* = f(x*). Assume that for some € Y, g(y) < g(y*). Since
y € Y, we may choose an € D such thatf(x) < y. Becausex € D,0 < f(x).
Asaresult[T7_; fj(x) < TT/_;y;- By (1), sinceg(y) < g(y*), this implies that

p P P
[T1H <[y <]y
j=1 j=1 j=1

Sincey* = f(x*), this implies thaf["_, f;(x) < [T/_; f;(x*). Becausex € D,
this contradicts that* is a global optimal solution for problenPg). Therefore,
the assumption that(y) < g(y*) for somey € Y is false.

By the definitions oY andy, sincex* € D andy* = f(x*), y* € Y. Combined
with the fact thag (v) > g(y*) forall y € Y, this implies that* is a global optimal
solution for problem Py). Moreover, by (1), since* = f(x*) andx* is a global
optimal solution for problem#p), ¢ = g(y*) = ]‘[;’:1 fi(x®). O

3. Outer approximation, branching, and bounding operations

In addition to the assumptions for proble®) given in the Introduction, we will
assume henceforth that

D={xeNg(x)<0,i=12... ,m}

where, for each = 1,2,... ,m, g : " — N is a finite, convex, differenti-
able function. We will also assume that there exists a pwirt i" that satisfies
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gi(a) <0,i =12, ...,m,and that foreach = 1,2, ..., p, the functionf; is
differentiable.

To solve problem (§), the branch and bound-outer approximation algorithm
performs several key operations in outcome space. This section explains these
operations.

3.1. OUTER APPROXIMATION

The algorithm constructs a set of one or more nonempty, decreasing polytopes
containingY that serve as outer approximationsitoT he first such polytop&® is
given by the rectangle

Z°={y e W|0< y < 5}

At the beginning of a typical iteratiokh > 1 of the algorithm, we have available
from the previous iteration a nonempty polytopk? C %7 that containg and a
point y*~1 e Z' for somet < k — 1. The pointy*~! may or may not belong t&.

It is found as part of the lower bounding operation in iteration 1, as we shall
see later.

Assume that > 1. In iterationk, to construct a polytop&* < R? that satisfies
Y C zk ¢ zk-1 first the convex nonlinear progra(# (y)) given by

(T(y)) minx,
S.t.
fx) = 2" —y) —y<0,
gl('x) go’ i:1?27“‘7m?
0 <A<,

is solved, withy set equal to*~2, for an optimal solutiorix*" , A;), wherey! e %”
is a vector inY prechosen in the algorithm to satisfyx) < y/ < § for some
x € D. Thisyields a poinw* = A, (y! — y*~1) 4+ y*~1. It is easy to show that when
=0, w, =yt e Y, and, when, > 0, w* € 3y andy*~1 ¢ Y.
When i, = 0, the outer approximating polytogé* is given by z¢ = z+-1,
i.e., a new outer approximating polytopeXas not constructed in iteratioR.
Whenx, > 0, the algorithm finds a supporting hyperplafido Y atw* € 9Y
of the form

E ={y e R|(u, y — w") =0}.

Furthermore, the algorithm chooses the valu# « in E in such a way that for all
yey,

@,y —w")y >0 (3)
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and
@,y t—wh <o. (4)
Subsequently, the new containing polytdpeis constructed via the formula
Zk = 71Ny e W@, y — wk) > 0.

In this way, Z* satisfiesy € zZ¥ < z*¥~1. Notice thaty*~! ¢ z* and thatz* is
obtained fromz*~1 by seeking to “cut off” a portion of*~1 via the inequality (3).
For a construction of* of this type for the case wheieis polyhedral, see [28].

To find a vector: € R? that satisfies (3) and (4), the algorithm finds any values
for the vectors: € %i” andv € RN™ that satisfy the system

u,v =0, 5)
> uj=1, (6)
JjEB

p m

S w91+ Y vl Vel =0, (7)
j=1 i=1
wilf;(x*) —wh]=0, j=1,2...,p, (8)

and

vigix")=0,i=1,2 ... ,m, (9)

and setsi = u, where

B={je{l2. ... plfich=uwk,

and, for any functiork, Vi denotes the gradient af The next result validates this
portion of the outer approximation operation.

THEOREM 3.1. Assume thak; > 0. Then there exist vectois € %? andv €
N, whereu # 0, that satisfy (5)—(9). Furthermore, i () satisfies (5)—(9), then
(@) u #0;
(b) u satisfies (3) forally € Y;
(c) u satisfies (4).

Proof. Consider the convex nonlinear prograimH) given by

(TH) miné,
St
f(x) —ef —w* <0,
gx) <0, i=12...,m,
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wherex € )" and6 € 9 are the variables and € %7 is the vector of ones. By
definition ofw, we may choosé € % so that

f(a)—eé—wk <0
and
gi(a)<05 i:1,2,...,m.

Sincef; : RN — N, j=L2...,p,andg : " — N,i =12 ... ,m,are
finite, convex, differentiable functions, this implies that Slater's Constraint Qual-
ification holds for problemTH) (e.g., see Mangasarian [20]). Notice also that
since ¢*", A,) is an optimal solution to probleffi(y*~1), wherex, > 0, (x7, 6) =
(xk",0)is an optimal solution for problem (T H

Using the Kuhn—Tucker—Karush necessary conditions for problE#)(at
", 0) [20], it is easy to show that there existe 9i? andv € %™ such that

Yuj=1 (10)

and which together satisfy (5) and (7)—(9). By (5) and (10), for any such vectors,
u # 0 must hold. Furthermore, by (8), (10), the definitionmfand the feasibility

of (x*",0) in problem (T H), (6) will also hold. As a result, there exist vectors

u € R’ andv € N, whereu # 0, that together satisfy (5)—(9).

Now suppose thati( v) satisfies (5)—(9). Notice that since*’ , A,) is an op-
timal solution to problent (y*=1) with A, > 0, B is nonempty. By (5) and (6), this
implies thatiz # 0.

For anyx € 0", let g"(x) denote[g1(x), g2(x), ..., gn(x)] and letd : R"* —

9 be defined for each € R" by

d(x) = (i, f(0)) + (0, g" (),

where (-, -) denotes the inner product. Then, by (5), since each entry(in
andg™(x) is a finite, convex, differentiable functiod, is also finite, convex, and
differentiable. From (7), this implies that

d(x) > d(x")

for anyx € R". From (8) and (9) and the definition af this inequality may be
equivalently written

(i, f Q) + (0, 8" () = (d, wh). (11)
Whenx € D, g"(x) < 0. By (5) and (11), this implies that for anye D,
(i, f(0) = (@, w). (12)
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Lety € Y. Then we may choose a poifite D such thatf (x) < y. By (5),
this implies that(ii, y — f(x)) > 0. From (12), sinc& € D, (i1, f(x) — wk) > 0.
Adding the inequalities in the previous two sentences, we obtaifihat— w*) >
0. By the choice o, this implies that (3) holds for alf € Y.

By definition of y/, we may choose a point € D such thatf (x’) < y’. Thus,
for 8 e {t € N0 < ¢ < 1} sufficiently small,[ f(x!) — y'T1+ 8[y! — y*1] < 0.
This implies that

fah—@-9H0p" -yhH-y*t<o,

so that(x, 1) = (x!, 1—48) is a feasible solution for probleqT (y*~1)). Therefore,
M<(A-9%) <1,
Define a linear functiors : Y — 9 for eachy € Y by

BOY) = (i, y — w*).

By definition of y/, we may choose a point € D such thatf (x’) < y! < . As
a result, fore > 0 sufficiently small,

e <y - <3,
so that(y! — ¢ii) € Y. Therefore, since (3) holds for alle Y,

0 < BO —en)
= (4, y —en —wh)

(ﬁv yl - wk> - 8<l25 ﬁ)
= B —e(i, ).

Sinces and (i, i) are strictly positive, this implies thgk(y’) > 0.
Becausav® = Ay’ + (1—1;)y*~! belongs tar andp is linear onY, it follows
that

Bwr) = mBOH + (1 — 2O, (13)

By definition of 8, (w*) = 0. Since O< A, < 1 andB(y’) > 0, this, together
with (13), implies that

BOM™ = =BG /(L= A1)l

is negative. As a result, from the definition @fit follows that (4) holds. a

An efficient linear programming procedure for calculating values & and
v = v that together satisfy (5)—(9) will be explained in Section 5.
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3.2. BRANCHING

The algorithm performs a branching process in outcome space that iteratively par-
titions a rectangle”° containingY into subrectangles. This process helps the
algorithm identify the location iy’ of an optimal solution to problem ¢J.

To help explain the branching process, we will need the following definition.

DEFINITION 3.1 [7]. LetQ be a subset dfi” and letJ be a finite set of indices.
Aset{M;, j € J} of subsets oD is said to be gartition of Q when

(@ =M,
jeJ
and
bO)yMiNnM; =0,M;NoM;foralli,jeJ,i#j,

whered, M; denotes the (relative) boundary &f.

During each iteration of the algorithm, a more refined partition is constructed
of a portion of H° that contains an optimal solution to problemny jP
The initial rectangle”® containing in the branching operation is given by

H°=27°={y e®’|0< y < ).

Notice thatH° is p-dimensional, since O< $. The initial partition P° consists
of simply H°, since at the beginning of the algorithm, we cannot yet exclude any
portion of H° from consideration. This partitioR® is given by

P° = (HO).

Letk > 1. At the beginning of step of the algorithm, we have available a parti-
tion P¥~1, consisting ofp-dimensional rectangles, of a portion B that cannot
yet be excluded on the basis of it not containing an optimal solution for problem
(Py). Also available is a membei*~1 of P*~* chosen in stefg — 1 for further
examination.

During stepk, the branching process subdividd$ ! into two p-dimensional
subrectangles of equal volume. This subdivision is accomplished by a process
called rectangular bisection, which is defined as follows.

DEFINITION 3.2. LetW be ap-dimensional rectangle ifi” given by
W={yehla<y<b},
wherea, b € R” anda < b. Suppose that

(bi —a;) =maX{(b; —aj)|j € J},
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whereJ = {1, 2,..., p}. Letm € R? be defined by

m. — aj, |f];él
! (a; +b)/2, if j=i.

Then{Wi, W5} is called arectangular bisectiorof W, whereW; and W, are the
p-dimensional rectangles given by

Wi={yeWRlla; <y; <bj, jeJ\li},a <y <my}
and
Wo={yeNla; <y; <bj, jeJ\li},m; <y <b}

Notice in Definition 3.2 that: is the midpoint of a longest edge Bf. From Horst
and Tuy [7], the rectangular bisecti¢i/;, W} in Definition 3.2 forms a partition
of W in the sense of Definition 3.1.

Let {H,b:l} denote the rectangular bisection &f ! formed by the branching
process in step. Then the partitionP* of the portionH°\ F of H° not yet excluded
from consideration is

P¥={H e (P*N\H*Y|H ¢ F}| J{H € HH)|H ¢ F), (14)

whereF denotes the current set of rectangles that have been eliminated from con-
sideration as possible regions for containing a global optimal solution to problem
(Py). We will see howF is derived and maintained in the next subsection.

For purposes of analyzing convergence, we need the following definition and
theorem (cf. Horst and Tuy [7]).

DEFINITION 3.3. LetW be a subset afi”, and let{ P¥} denote a sequence of
partitions of W such that for each, each element aP**1 is formed by partitioning
some element of*. Let {M*} denote an arbitrary sequence of partition elements
such that for eaclt, M* e P* and M**! is a strict subset oM*. The set of
partitions { P1, P?, ...} is calledexhaustivewhen limM* = n,M* = {q} for
some single poing € N7.

THEOREM 3.2. Let W be a p-dimensional rectangle ifi”. Let { P¥} denote a
sequence of partitions d¥ such that, for eactt = 1, 2,..., each element of
P**1is formed by creating a rectangular bisection of some elememt‘ofThen

the sef{ P, P?, ...} is exhaustive.

3.3. BOUNDING

Three types of bounds are computed by the algorithm. The first is a local lower
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bound for the objective functiog of problem (Py) over (Y N H), whereH is a
given p-dimensional rectangle ifi”. This local lower bound is a numbérB(H)
that satisfies

LB(H) < g(y) forally e (Y N H).

In the algorithm,L B(H) is computed forH = H° and for each rectangl&
formed via rectangular bisection &f*~! for eachk = 1, 2, ... (cf. Section 3.2).
Recall from Subsection 3.2 that

H°={y eRr|0<y < 3§},

andY < H°. Therefore, a simple lower bound ferover (Y N HO) is given by 0.
In the algorithm,L B(H°) is set equal to 0.

Let k satisfyk > 1. In stepk of the algorithm,H*~! is subdivided into two
rectangles via rectangular bisection. We may assume that each of these rectangles
is of the form

H={he R h*<h<h?,
where 0< h' < h2. The lower bound. B(H) for g over(Y N H) computed by the
algorithm is given by

LB(H) = maXLB(H), LB(H*Y)}, (15)

where the rule for finding. B(H) depends upon whether or nigt e (z* N A).
If h* e (Z¥N H), thenL B(H) is given by

p
LB(H) =] ]n. (16)

Notice that ifL B(H) is given by (16), then
LB(H) < g(y) forallye (Y nH). (17)

To see this, let! € (ZF N H). Sincey < Z*, (Y N H) € (Z¥N A). Therefore,
the minimum value of¢ over (Z" N H) is a lower bound forg over (Y N H).
Furthermore, sincé! € (Z* N H), it is easy to see that the minimum valuegof
over(Zkn ﬁ) is equal tog(h?). The previous two statements together imply that

P
gy =[]r} < g forally ey nH). (18)
j=1

Taken together, (16) and (18) show that (17) holds.
Whenht ¢ (ZFN A), LB(H) is again given by (15), but a different method is
used to calculate the value BB (H). This method relies upon an underestimating
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functiong : 9i? — N for g on H. For anyy € %7, the value of this underestimating
function is given by

q(y) = max{qi(y), q2(y)}, (19)

whereg;(y) andg,(y) are linear functions o given by the formulas

p

P P

w =3 |0 yj—{<p—1>nh,.l} @)
i=1 i=1
i%]

j=1
and

14

14 14

e =3 |17 yj—[<p—1>nhf}, @y
i=1 i=1
i£]

j=1

respectively. Notice that fop = 2, (19)—(21) gives theonvex envelopef g over
H [23].

THEOREM 3.3. If y € A theng(y) < g(y).

Proof. To prove the theorem, we will show thatjfe H, thengi(y) < g(y)
andq2(y) < g(»).

Suppose that € H. To show thaiy;(y) < g(y), we will use induction orp.
Forp = 2,41(y) < g(y) follows from McCormick [23].

Let us hypothesize, then, that for an arbitrary vatugf p, g1(y) < g(y). Set
p =k +1in (20). Then, since € H,

(V1 — hiyy) = 0

It follows that

k k
(Vk+1 — h/}_;_l) <l—[ Ve — l—[ h}) > 0. (22)
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Therefore,

k+1 k k k+1
1_[ Ve 2 h]%.,.l (1_[ )’t> + (1_[ h}) Yk4+1 — l_[ h}
t=1 t=1 t=1

=1

k k k k k+1
>hiy | D | [THH |y =« =D i |+ (l_[ h%) yerr =[] At
t=1 i=1 i=1 t=1 =1
it
k k+1 k+1 k+1
= (> [ TTr o [+ T[] A | v — k[ ]AF
=1 i=1 =1 =1
it ] t#k+1
k+1 [ k+1 k+1
=Y | TIxH |y =+ A (23)
=1 i=1 =1

it
where the first inequality follows from (22), and the second inequality follows from
h,{H > 0 and the induction hypothesis. Using (1) and (20), from (23) it follows
thatforp =k +1,8(y) = q1(»).

By induction onp, we conclude that for all values ¢f, if y € H, thengi(y) <

g(y). Thefactthay,(y) < g(y)forally € H canbe similarly shown by induction,
so that the theorem is proved. a

Whenh! ¢ (ZFn H), fﬁ(ﬁ) is set equal to the optimal value of the nonlinear
programming problem

ming(y), s.tye (Z"NH). (24)

Since(z¥ N H) 2 (¥ N H), from Theorem 3.3, with this value fdtB(H), the
inequality (17) is satisfied. Notice thatB(H) = +oo when(Z* N H) = .

We have seen that whethiet € (Z* N H) or ' ¢ (Z* N H), the algorithm
computesLB(H) so that (17) holds. From (15), it will follow that

LB(H) < g(y) forally e (Y NH), (25)
as required by the algorithm, if for eagh> 1,
LB(H*Y) < g(y) forally e (Y N H). (26)

To see that (26) holds for all > 1 and ally € (Y N H), let y be an arbitrary
element of(Y N H). Then, fork = 1, we have already shown that (26) holds.
Choose any > 1, and suppose that (26) holds forialk= 1, 2, ... ,s — 1. Notice
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that H°~1 is the immediate offspring of some rectanglé, where 0< ¢ < (s — 1).
From (15), this implies that

LB(H* Y = maxLB(H'™Y, LB(H")).

Therefore, LB(H*~Y) equals eitherLB(H*~1) or LB(H'). If LB(H*™Y) =
LB(H*™Y), then, by (17), we may apply (25) witH = H*~L. Upon doing so,
we see that (26) holds with = s. Otherwise,L B(H*~') = LB(H") will hold.
By hypothesis,LB(H') < g(y). SinceLB(H*™1) = LB(H"), this implies that
(26) again holds witlkt = s. Therefore, by induction ok and the choice of, (26)
holds for allk > 1 and ally € (Y N H).

The property given in the next result shows thaand ¢ are equal at certain
points of H.

COROLLARY 3.1. Let H = {h € %”|h* < h < k%), and letg : %” — % be
defined by (19)—(21). Thef(y) = g(y) for all y € {h'} U Ny U {h?} U N,, where,
for eachi = 1, 2, N; denotes the set of all extreme pointsfbhdjacent tak’.
Proof. We will prove the corollary foi = 1. The proof fori = 2 is similar and
will not be given.
Lety = hl. Then, from (20),

q1(y) = q1(h")

P P P
= [1r h%—[(p—l)]_[h}}
=] 2 i=1
= pg(h") — (p — Dg(h")
= g(h"). @7)
Now lety” = (hi, h3, ..., h{_4, hZ, hiy, ..., h}) wherer € {1,2,..., p}.

Then, from (20),

P P P p
a) =) | [Tn]ri+ Hw-ﬁ—%p—bfpﬂ
i=1 i=1
i#t

j=11 i=1
J#E i
=(p—Dghh + () — [(p — Dghh)]
=g(). (28)

From (27) and (28)q1(y) = g(y) for all y € {h'} U Ny. Forallz € H, by (19)
and Theorem 3.3;(z) = maxXq1(z), g2(z)} < g(z). The previous two statements
imply that if y € {A'} U Ny, then

q(y) = max{g(y), q2(y)} < g(»). (29)
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Choose any e {1} U N1. Then there are three possibilities, Case 1)y) <
8(»), Case (2)g2(y) = g(y), and Case J2(y) > g(»).

Case (1)g2(y) < g(y). From (29), this implies that(y) = max{g(y), g2(»)} =
8(y).

Case (2)g2(y) = g(y). Then from (29)g2(y) = g(y) = max{g(y), q2(»)} =

q(y).
Case (3)g2(y) > g(¥). Then, using (29), we obtain

g(y) < g2(y) < q(y) < gy,

which is impossible. Therefore, this case cannot hold.
Summarizing, the arguments so far imply that foryak {h'} U N1, ¢2(y) <
g2(») = q1(y). From (19), this implies that for all € {h'} U N1, q(y) = g(y). O

The second bound computed by the algorithm is a global lower bound for the
optimal objective function value of problen®P(). In step 0 of the algorithm, this
lower bound is denotefl B(H°) and is given byl B(H®) = 0. For eactk > 1, in
stepk, this lower bound LB is computed via the equation

LB =min{LB(H)|H € P*}, (30)

where P is given by (14). Subsequently, aiy € P* such thatL B = LB(H) is
chosen, andi* is set equal tad.

The third bound computed by the algorithm at skep= 0 is a global upper
bound U B, for the optimal objective function value of problen®y). For each
k > 0,UB, = g(y°), wherey* is theincumbentfeasible solution for problem
(Py), i.e., among all feasible solutions for proble®,§ found through any point
in the algorithm,y¢ achieves the smallest value @f

The setF is the set offathomedsubrectanglesi of H°. When, in some step
k > 1, the algorithm detects that

LB(H) > UB,

for some subrectanglé/ C H°, H is added toF. Subrectangles iF cannot
contain global optimal solutions to problery).

The validity of (30) as a global lower bound for the optimal value of problem
(Py) and of the rules for calculating/ B, k > 0, and maintainingF’ can be
shown quite easily by using standard branch and bound arguments from global
optimization [7].

4. The algorithm

Based upon the results and operations given in Sections 2 and 3, the new outcome
space algorithm for problemPp) may be stated as follows.
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OUTCOME SPACE ALGORITHM

Step 0 Chooses > 0. Find pointh’ e D andy’ e M? such thaty > y’ >
f(x). SetUBg = g(y"), y* = y! andx® = x!. SetF = ¢, and setH® = 7° =
{yeRP|0< y < $).SetP? = {H°}, LB = LB(HO) =0, andy® = 0 € R’ Set
k = 1 and go to step.

Step kk > 1.

Step KL. SetU B,=U B;,_;. Find an optimal solutior(ka, Ar) to the convex
nonlinear programming probledT (y)) with y = y*~1,

Step K. Setw* = A (y! — y¥ + L If g(wk) < UBy, setUB, =
gwh), y¢ = wk, x¢ = x*, andF = FU{H € P*YLB(H) > UB}, and
continue. Ifg(w*) > U By, continue.

StepK3. If UB,— LB < &, STOP:xx¢ is a globals-optimal solution for problem
(Pp), andy© is a globals-optimal solution for problem (. Otherwise, ifA; > 0,
go to stepk.4, and, ifA;, = 0, setZ* = Z¥~1 and go to ste.6.

Step k.4. Find any values for the vectors %i” andv € 0™ that satisfy (5)—(9).

Step k.5. Set

Zk =71 {y e R\ (u, y — w*) > 0.

Step k.6. Subdividé/*—* into two p-dimensional rectangle,H C %” via the
rectangular bisection process.

Stepk.7. Foreach df = H andH = H computel B(H) and apomtyH it
as follows, where we assume without loss of generality fhat {h € %7 |h! <

< h?) for someht, h* € %7 such that 0< it < 12,

Case 1h' e (zKN H). Sety” = ht and, withLB(H) = g(h1), setLB(H) =
maxLB(H), LB(H* Y}

Case 24l ¢ (ZFN H). SetLB(H) equal to the optimal value of problem (24),
and, |fLB(H) # o0, sety’’ equal to any optimal solution to (24). Then, set
LB(H) = maXLB(H), LB(H*1)). )

Step k.8. Foreachdf = H andH =H, if LB(H) > UB, setF = F U{H}.
Set

Pe={m ety i my i H ¢ FlL
Step k.9. Set
LB =min{LB(H)|H € P*}.

Choose anyl € P* that satisfied B = LB(H). SetH* = H andy* = yl. Set
k =k + 1 and go to step.

We shall soon see that except for steft, the steps of the Outcome Space
Algorithm can be implemented by simple algebraic calculation and linear program-
ming. First, we will give the convergence properties of the algorithm.

The main convergence property of the algorithm is given in the following result.
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THEOREM 4.1. Suppose that the algorithm is infinite. Then it generates a se-
quence{w*} of feasible solutions for problemP{), every accumulation point of
which is a global optimal solution for problen®f), and

lim UB, = lim LB(H" = ¢.
k— o0 k—o00
Proof. See Appendix.

A solution x is said to be alobal e-optimal solution for problem (B), where
e > 0is a given number, whed € D and¢ < []]_; f;(X) < ¢ +¢. A global
g-optimalsolution for problem Py) is defined similarly.

By the following result, whem is chosen in step 0 to be positive, the algorithm
will be finite and will yield globale-optimal solutions for both problems (P and

(Py).

COROLLARY 4.1. If ¢ > 0, then the algorithm is finite and terminates in some
stepk, wherek > 1. In this case, upon terminatiorf is a globale-optimal solution
for problem (Pp), andy¢ is a globale-optimal solution for problem#y).

Proof. Let ¢ > 0, and suppose, to the contrary, that the algorithm is infinite.
Then, by Theorem 4.1,

klim U By =klim LB(H" = ¢. (31)

Notice that for eaclh > 1, L B(H*) is equal to the value af B in step & + 1.3) of
the algorithm. Therefore, it follows from (31), sinee> 0, that there will exist an
integerk sufficiently large such tha/ B; — LB < ¢ is satisfied in ste.3 of the
algorithm. Since the algorithm will terminate in this case, we have a contradiction
to the assumption that the algorithm is infinite. Thus, it must be finiteIGL;etl
denote the terminal step of the algorithm.

At the termination of the algorithn/ B; = g(y©). From stepk.3, this implies

that g(y©) — LB(H*1) < e. From Section 3.3L B(H*"1) is a lower bound for
the optimal objective function value of probleriy). By Theorem 2.2, the optimal
objective function value of problemP{) is ¢. Taken together, the previous three
observations imply thag(y“) < ¢ + ¢. Sincey‘ € ¥, ¢ < g(y°). Thus, we have
shown thatp < g(y°) < ¢+¢ andy® € Y, which together imply that® is a global
g-optimal solution for problem (;P.

For eachk > 1, by stepk.1, x* € D. This implies by step 0 and by step
k.2 thatx® € D at the termination of the algorithm. By assumption, sim€ec
D, f(x°) > 0. For eachk > 1, from stepk.1, we know thatf (x¢) < w*. From
stepk.2, this implies thatf (x) < y¢ at the algorithm’s termination. From the
previous paragraphg(y‘) < ¢ + ¢. Since 0 < f(x¢) < y¢, this implies that
[T/—1 fi(x9) < g(y) < ¢ + &. Furthermore, since® € D, ¢ < []]_; f;(x). We
have thus shown thgt < ]_[;’=1 fi(x9) < ¢+ ¢ andx® e D, which together imply
thatx¢ is a globale-optimal solution for problem (). O
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5. Computational issues

To initiate the Outcome Space Algorithm, a finite vectos )7 must be available
that, foreachj = 1, 2, ..., p, satisfies

y; > maxfj(x), st.xeD. (32)

In some caseg) can be immediately estimated by simply examining the particular
functions f;, j = 1,2,..., p, and feasible regio® involved in the instance of
problem Pp) in question. When this is not possible, an efficient computational
procedure is available for determinigg This procedure avoids the need to solve
the p convex maximization problems in (32). It is based upon the following two
results.

THEOREMS5.1. Let M € % andv® e R" satisfy
M > maxe, x), StxeD

and
v® =minx,, s.txeD,

for eachr = 1,2,... ,n, wheree € R" denotes the vector of ones. Let=
M — (e, %), and define’ e W*,i =1,2,... ,n, by

V9, ifj #i,

Uli: )
v?—i—y if j =1i.

J

Then the convex hul of v°, v1, ... , v" is ann-dimensional simplex with vertex
set{v°, v1, ... ,v"},andS D D.

Proof. Sincey # 0, {(v' — 0|t = 1,2, ... ,n}is a linearly independent set.
Therefore,{v°, v1, ... , v"} is an affinely independent set. By definitighjs thus
ann-dimensional simplex with vertex sat®, vt ... , v"}.

Suppose that € D. Then, by definition ob?, (x —v° > 0. Furthermore, from
the definition ofM, sincex € D,

(e, x — % < M — (&,9). (33)
By definition ofy, since(x — v% > 0, this implies that for each= 1,2, ... , n,

0< @Y <. (34)
Therefore, we may choose,, o, ... ,a, such that for each = 1,2,...,n,

O0<a, <land

(x — Uo)t =ary. (35)
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From the definitions ob’,r =1, 2, ... , n, this implies that

n
¥ =014 Za,(vt —9
t=1

= (1 - Zaf> W0+ Za,vt. (36)
=1 t=1

From (33) and (35) and the definition pf
y ) a<M— (@) =y.
t=1

Since, by (34)y > 0, this implies thatl — }"_; «;) > 0. Therefore, from (36),
sincea; > 0,t =1,2,...,n, xisinthe convex hull ob’,r = 0,1, ... ,n,i.e.,
x € §. Thus,D C S, and the proof is complete. a

COROLLARY 5.1. Any finite vectory € R? that satisfies
$; > maxfw)li=0,1,...,n}

foreachj = 1,2..., p, also satisfies (32), wheté,i =0, 1, ... , n, are defined
in Theorem 5.1.

Proof. From Theorem 5.1 and Martos [21], for eagh= 1,2, ..., p, sincef;
is a convex function oves,

max f;(x)|x € S} = max{ f;(v)i =0,1,... ,n}.

Since, by Theorem 5.5 2 D, foreachj =1, 2,..., p, the left-hand side of the
equation above equals or exceeds

max f;(x)|x € D}.

By the choice ofy, this implies that (32) holds. O

From Theorem 5.1 and Corollary 5.1, a pointhat satisfies (32) can be ob-
tained by computing the vertices,i = 0,1, ... , n, given in the theorem for the
containing simplexs of D and then using the corollary to find Notice that this
process involves solvin@: + 1) convex programming problems, each of which has
a simple linear objective function and the same feasible refion

Step 0 of the algorithm suggests setting bathand Z° equal to

{yeR0<y <y} (37)

Since f(x) > 0 for all x € D, this choice and the choice g¢f guarantee that
H% and Z° containY. To speed convergence of the algorithm, however, it may be
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useful to initializeH® and Z° with a smaller set containing than (37). One option
for accomplishing this is to calculate, for eagh=1,2, ..., p,

m; =min f;(x), s.txeD,
and to set botl° and Z° equal to
{y e Wm <y <3},

wherem = (my,my, ... ,m,). While this option involves solving additional
convex programming problems, the savings that could be obtained thereby in speed-
ing convergence may in some cases make the option worthwhile.

For eachk > 1, stepk.4 calls for solving the feasible system (5)—(9) of equa-
tions (see step.4 and Theorem 3.1) involving the nonnegative variables )?”
andv € R™. This step can be implemented by linear programming methods as
follows. First, for eacly € {1,2,..., p} such thatf; (x*) # w’; in (8), setu; = 0.
Next, for each € {1, 2, ..., m} such thatg; (x*) # 0in (9), sety; = 0. LetB (as
in Section 3) denote the indices otthat arenor preset to 0, and lef’ denote the
indices ofv that arenot preset to 0. Now initiate the simplex method on the linear
program

max Zuj,

JjEB
s.t.
Zuj <1
jeB
D wlIVAEHI+ ) ulVe 1 =0,
jeB ieC
uj >0, jeB,
v; = 0, i eC.

When the simplex method finds a feasible solut{@gno) to this linear program
with

Y iy =1,

JjEB
it is terminated. Theriu, v) defined by

0 ifj¢B
u; =
" la; ifjeB

o itigc
T 1’5,' ifieC
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satisfies (5)—(9).

Case 2 of step.7 of the algorithm calls for solving the nonlinear programming
problem (24). In particular, problem (24) calls for minimizing the nonlinear func-
tion ¢(y), given by (19), over a compact polyhedre®t N H). From (19), to solve
problem (24), the problem (L)P

min ¢,

st.t = q(y),
12 q2(y),
y e (ZXN H)

can be solved instead. Singeandg, are linear functions of, and sincg Z* N H)
is a polyhedron, problertL P) is a linear programming problem. Thus, Case 2 of
stepk.7 can be implemented by linear programming methods.

The discussions in this section and the algorithm statement show that for each
k > 1, stepk of the Outcome Space Algorithm can be implemented by simple al-
gebraic calculations and linear programming, and by solving one convex nonlinear
program (cf. ste@.1).

6. Example

To illustrate the Outcome Space Algorithm, consider the probleg) (ith p =
n = 2, where

filxg, x2) = (x1— 22+ 1,
fo(x1, x2) = (x2—BH?+1,

and D is defined by the constraints

g1(x) = 25x + 4x5 — 100< 0,
g2(x) = x1+2x2,—4<0.

Prior to initiating the algorithmy = (18.0, 38.0) was determined by the computa-
tional procedure suggested in Section 5.

Initialization: We chooses = 0.025,x' = (0.585,0.837) € D, andy’ =
(3.0,11.0. ThenU By = g(y") = 33.0,y° = (3.0, 11.0 andx‘ = (0.585,0.837).
We setF = # and, using the suggestion in Section 5, weBét= 7% = {y ¢
N2)(1,1) < y < (18,38)). We setP® = {H®}, LB = LB(H®) = 1, andy® =
1, 1).

Stepl: We setlU B;=33.0. Then, solving the convex prograffi(y)) with y =
(1, 1) yields (x*, 1) = (0.904,1.548,0.600). As a result, we determine that" =
(2.200,7.000). Sinceg(w') = 15.40 < 33.0,U B is set equal to 15.40; is set
equal to (2.200, 7.000), and is set equal to (0.904, 1.548). SinéB(H?) =
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1 # 1540,F = FU@ = (. BecausdJ/B; — LB = 14.40<0.025, we do not
stop the algorithm. Instead, we determine that= 0.600 > 0. Using the linear
programming procedure given in Section 5, we find thatv) = (0.528, 0.472,
0.000, 1.157) Therefore,Z! = {(y1, y2) € W1 < y; < 18,1 < y, < 38,
0.528y + 0.472y, > 4.466). Next, H° is subdivided by bisection intél =
{h € W1 < hy < 18,195 < hy < 38}andH = {h € W1 < hy <
18,1 < hp < 19.5. We find thatLB(H) = 19.5, y/=(1.00,19.50), and, via
the linear programming method given in Section 5, th&H)=7.564 andy’=

(7.564, 1.000). Sincé& B(H) > U B;=15.40, butL B{H)#U By, F is set equal to
{h e W?|1 < hy < 18,19.5< hy < 38}and Plis set equal td{h € R?|1 < hy <
18, 1< hy, < 19.5}. As aresult,LB = 7.564, H' = {h € W?|1 < h; < 18,
1< hy < 19.5, andy! = (7.564,1.000).

Step2: We setU B, = 15.40. Withy = (7.564,1.000), the convex program
(T (y)) has optimal solutiorix?, 1,) = (—0.2050,2.1025,0.36). The pointw? is
found to be (5.921, 4.600). Singgw?) = 27.2366> U B,, we next test for ter-
mination. Upon doing so, we find th&tB, — L B = 15.400—7.564 = 7.836«¢ =
0.025. Continuing, we see that = 0.36 > 0. We therefore proceed to computing
(u,v) = (0.1771,0.8229,0.000,0.7810. As a result,Z? = {(y1, y2) € R?|1 <
y1 <18,1< y, < 38,0.528y+0.472y, > 4.466,0.1771y +0.8229y > 4.833}.
Subdividing H* via bisection yields? = {h € RW?|1 < hy < 18, 10.25< h; <
19.50}andH = {h € N1 < hy < 18, 1.00< hp < 10.25} We find that
LB(H) = 10.25,y" = (1.00,10.25) LBH) = 8.0, andy” = (3.9690,5.0215)
We then setP? = {{h € R?|1 < hy < 18, 10.25< hy, < 1950} {h €
M2l < hy < 18, 1.00 < hy < 10.25}}, LB = min{10.25,8.00} = 8.00,
H? = {h € ®?|1 < hy < 18, 1.00< hy < 10.25} andy? = (3.9690,5.0215)

The algorithm terminates in step 8 with glolzgabptimal solutions for Pp) and
for (Py) given by

x* = (1.88819671.0553269)
and
y* = (1.0125,9.6711),

respectively, where = 0.025. In addition, the terminal step shows thaté59887
< ¢ < 9.7919887.

7. Concluding remarks

We have presented a new algorithm for solving the Convex Multiplicative Program-
ming problem @p). The algorithm, called the Outcome Space Algorithm, has the
following key advantages.

(1) By working in the outcome spac®” of problem (Pp) instead of in the
decision spacé&i”, the algorithm economizes the computations required to solve
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the problem. This is mainly due to the fact thais typically much smaller than
n. The algorithm works imi”? instead ofR” by solving the problem#y), which is
equivalent to problemKp), in order to solve problem ().

(2) In contrast to typical outer approximation algorithms, by combining branch
and bound with outer approximation (both in the outcome space), the algorithm
avoids computing the vertices of the successive polyhedra containing the set
that are created by the outer approximation process. Avoiding such calculations is
known to yield considerable computational savings.

(3) Only one nonlinear convex programming problem need be solved per itera-
tion of the algorithm. The remaining operations in each iteration can be implemen-
ted by simple algebraic means and linear programming techniques.

For these reasons, we conclude that the Outcome Space Algorithm offers a
potentially very attractive option for solving convex multiplicative programming
problems.

Appendix

Proof of Theorem 4.1Since the algorithm is infinite, it generates a sequenég
of points that satisfies‘ € H* for eachk. We may assume that for eakhH* ! c
HFi.e., that the sequend&l*} isnested. By Theorem 3.2, limH* = N H* = {3y}
for some pointy € %7. Therefore, limy* = y. We will first show thaty € Y.
Consider the sequendg,}. If {A,} contains a subsequence consisting entirely
of zeros, then, from step.1 of the algorithm and the fact that ¢ H* < H° for
all k, a corresponding subsequence of points ffef) will lie entirely in Y, so that
y € Y will hold.
Now assume thar,} contains no subsequence of zeros. We may then assume
for notational simplicity thak, > O for all k. From step.1, k.2 andk.4, for each
k, wk, A andu = u* belong to the compact seld, {r € %0 < ¢ < 1}, and
{u e NPlu = 0,uy +ur+--- +u, = 1j, respectively. Therefore, we may assume
that ask — oo, wy — w € Y, Ax — A, where 0< A < 1, andu®f — i1, where
i > 0andiy +ip+---+i, = 1. By stepk.2, w = A(y’ — ¥) + y. Sincew € Y
andy’ ¢ aY, this implies that. # 1. In addition, this equation implies that

(5 —w) = [A/(L =M@ — y"). (38)

From Theorem 3.1(b) it is easy to see that y — w) > O for ally € Y.
Furthermore, it is a simple exercise to show that, as a result,

(i, y' —w) > 0. (39)
From Theorem 3.1(c), we see that
(w, y—w) <0 (40)

By using steps.5 andk.7 of the algorithm and the fact th&t/*} is nested,
wherey* e H* for all k, it is easy to show thatii, y — w) > 0. Combined with
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(40), this shows thatiz, y — w) = 0. Using (38), we obtain that
i, y—w) =[A/A =@, @ —y").

By (39), since(iz, y — w) = 0, this implies that. = 0. As a result, sincer =
r(y! — %) + ¥, we see thafv = y. Sincew € Y, this shows thaf € Y.

Having shown thag € Y, we now show thag is an optimal solution to problem
(Py). There are two cases to consider. Either (1) for some subsequenég jof
Case 1 holds in step 7 or (2) for some subsequence{@f*}, Case 2 holds in step
k.7.

Case (1): Assume that Case 1 in step holds for some subsequence{ &f¢}.

Then we may assume, without loss of generality, that this case holds for each
element of{ H*}. Suppose that > 1. Let H* = {h € %”|h; < h < hZ}. Then,

from stepsk.7 andk.9, hi = y*, LB(H*) = g(h}), andLB(H") > g(hy). Since

the sequenceL B(H*)} can be shown to be nondecreasing and bounded above by
¢, and since, by Theorem 3.2, linlf* = lim; y* = y, this implies that

¢ > lim LB(H") > lim g = g().

Therefore,g(y) < ¢. From Theorem 2.2, since € Y, it follows thatg(y) = ¢
andy is an optimal solution for problem .
Case (2): Assume that Case 2 in step holds for some subsequence{ &f¢}.
Then we may assume, without loss of generality, that this case holds for each
element of{H*}. Assumek > 1, and letH* = {h € RP|hY* < h < K%K,
From stept.9 and Case 2 of step7,

LB(H*) > LB(H*) = ("),

where, by (19)—(21),

p P P
g(y") = maxi > | []@"i | vi— -1 ] @™,
j=11 i=1 i=1
i#]

P p p
[T | 5 = =1 [T,
j=1 | i=1 i=1
i#]

Since lim, H* = lim; y* = y and{L B(H*)} is a nondecreasing sequence bounded
above byp, this implies that

¢ > lim LB(H") > lim ("),
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(}jﬁ) (r—1 Qjﬁl),
ﬁ) -(=D (ljy>

where

3
D
X

:1“ M-

. k _
|l£n q(y") =

I
AN

=
-

= g(y).

Therefore,g(3) < ¢. From Theorem 2.2, sincg € Y, it follows thatg(y) = ¢
andy is an optimal solution for problem ¢.
Notice that in both Case (1) and Case (2),

¢ >lm LB(H") > g(3) = ¢.
Therefore,

Iikm LB(H" = ¢.

Now let & be an accumulation point af*. Then, since limp w* = w, w = w.
Furthermore, sincé& = y, w = w is an optimal solution for problem ¢#.

From stegk.2, for eachk > 1, g(w¥) > U B;. From the same step, singé € Y
for all k, {U B} is a nonincreasing sequence bounded below byhe latter two
statements together imply that

I|m g(wh) > I|m UB; > ¢.

Since limw* = w andw is an optimal solution for problem ¢, this implies that
¢ =g(@) >lim UB > ¢.

Thereforegp = lim, U By, and the proof is complete. O
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