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Abstract. This article presents a new global solution algorithm for Convex Multiplicative Program-
ming called the Outcome Space Algorithm. To solve a given convex multiplicative program (PD),
the algorithm solves instead an equivalent quasiconcave minimization problem in the outcome space
of the original problem. To help accomplish this, the algorithm uses branching, bounding and outer
approximation by polytopes, all in the outcome space of problem (PD). The algorithm economizes
the computations that it requires by working in the outcome space, by avoiding the need to compute
new vertices in the outer approximation process, and, except for one convex program per iteration,
by requiring for its execution only linear programming techniques and simple algebra.
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1. Introduction

Consider the Convex Multiplicative Programming problem

(PD) φ = min
p∏
j=1

fj (x), s.t. x ∈ D,

wherep > 2, fj : <n → < is a finite, convex function for eachj = 1,2, . . . , p,
D is a nonempty, compact convex set in<n, and, for eachj = 1,2, . . . , p, fj (x) >
0 for all x ∈ D. Problem(PD) has a number of important applications in various
areas, including, for example, economic analysis [5], bond portfolio optimization
[9], VLSI chip design [19], and multiple objective optimization [4]. It is well
known that the objective function of problem(PD) need not be convex onD,
and that problem(PD) generally possesses many local minima that are not global;
i.e., problem(PD) is a global optimization problem [10,28]. Furthermore, problem
(PD) is known to be NP-hard, even in special cases such as whenp = 2,D is a
polyhedron, andfj is linear for eachj = 1,2 [13,22].

To solve cases of problem(PD) whenp = 2, quite a large number of exact
global solution algorithms can be used. For instance, whenD is a polyhedral set
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andf1 andf2 are linear functions, the various parametric simplex-based methods
of Konno and Kuno [11,12], Konno et al. [15] and Schaible and Sodini [27] can
be used to solve the problem. In addition, for this case two branch and bound
algorithms ([24] and [16]) are available, as are the enumeration, discrete approx-
imation, outer approximation and polyhedral annexation algorithms of Pardalos
[25], Konno and Kuno [10], Aneja et al. [1] and Tuy and Tam [30], respectively.
For the case whereD is compact and convex andf1 andf2 are convex functions, at
least three exact global solution algorithms are available for solving problem(PD).
One of these, an outer approximation method due to Konno et al. [14], applies to
the problem of minimizing the sum ofk products of two convex functions each,
which, whenp = 2, includes problem(PD) as a special case. The other two of
these algorithms, by Kuno and Konno [17] and Thoai [28], use underestimation
and outer approximation, respectively.

Globally solving problem(PD) for cases wherep > 2 has been shown empir-
ically to generally require significantly more computational effort than the effort
needed for the case wherep = 2 [8,18,26]. To solve problem(PD) whenp > 2,D
is polyhedral andfj , j = 1,2, . . . , p, are linear, at least three exact gobal solution
algorithms and one heuristic algorithm are available. The three exact algorithms
are a polyhedral annexation method with dimension reduction due to Tuy [29], a
branch and bound, image-space algorithm by Falk and Palocsay [3] and a branch
and bound algorithm with range reduction developed by Ryoo and Sahinidis [26].
The heuristic algorithm is an efficient point search algorithm due to Benson and
Boger [2].

Three algorithms have been proposed that can solve the Convex Multiplicative
Programming problem(PD) whenp > 2. Sincep is generally much smaller than
n, to obtain computational efficiency, these algorithms all essentially work in the
outcome space<p rather than in the decision space<n of problem(PD). The first
of these algorithms to be proposed, due to Thoai [28], reduces problem(PD) to
a minimization of a quasiconcave function in<p over a convex set. The resulting
problem is then solved by outer approximation. The algorithm of Kuno et al. [18]
uses a different transformation to rewrite problem(PD) as a concave minimization
problem in the outcome space<p. This concave minimization problem is then
solved by an outer approximation technique that is specially adapted to its struc-
ture. A third algorithm suitable for problem(PD) has recently been proposed by
Jaumard et al. [8]. Using an extension of the transformation in [18], this algorithm
rewrites problem(PD) as a special quasiconcave minimization problem in outcome
space<p. A conical branch and bound algorithm involving the solution of(p+ 1)
nonlinear convex programming problems per iteration is then used to solve this
quasiconcave minimization problem.

A brief review of algorithms for solving problem(PD) can be found in Benson
and Boger [2]. For a more comprehensive review, see Konno and Kuno [12].

The purpose of this article is to describe and validate a new exact global solution
algorithm that we have developed for solving problem(PD). Like its predecessors,
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to enhance its efficiency, the algorithm works essentially in the outcome space<p
of the problem. In addition, however, it combines branch and bound with outer
approximation in such a way that the new vertices of the polyhedra used in the
outer approximation process need not be explicitly calculated. Furthermore, only
one nonlinear convex program is solved per iteration of the algorithm.

Section 2 shows how problem (PD) is converted to a quasiconcave minimiz-
ation problem in outcome space suitable for solution by the new algorithm. The
branching, bounding, and outer approximation operations of the new algorithm are
described in Section 3. Section 4 gives a statement of the algorithm and describes
its convergence properties. Some key computational issues are discussed in Sec-
tion 5. In Section 6, an example problem is solved and, in the last section, some
concluding remarks are given.

2. Conversion to quasiconcave minimization

In this section, we show how to convert problem (PD) to a quasiconcave minimiz-
ation problem (PY ) in outcome space. The new branch and bound-outer approxim-
ation algorithm can be applied to problem (PY ) in order to globally solve problem
(PD). For a similiar transformation, see [28].

For eachj = 1,2, . . . , p, let ŷj ∈ < satisfy

ŷj > maxfj (x), s.t. x ∈ D,
whereŷj < +∞, and letŷT = [ŷ1, ŷ2, . . . , ŷp]. For eachx ∈ <n, let [f (x)]T =
[f1(x), f2(x), . . . , fp(x)], and define the setY by

Y = {y ∈ <p|f (x) 6 y 6 ŷ for somex ∈ D}.
It is easy to show thatY is a nonempty, compact convex set in the outcome space
<p of problem (PD). Notice also that the interior ofY , denoted intY , is nonempty,
due to the choice of̂y.

Let g : <p → < be defined for eachy ∈ <p by

g(y) =
p∏
j=1

yj , (1)

and consider the outcome space problem

(PY ) min g(y), s.t.y ∈ Y.
The following results give some properties of problem (PY ). LetYex and∂Y denote
the set of all extreme points ofY and the boundary ofY , respectively.

LEMMA 2.1. Problem (PY ) consists of the minimization of a functiong that is
continuous on<p and quasiconcave on the nonempty, compact convex setY .
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Proof.The continuity ofg on<p follows from (1) and elementary limit results.
As observed earlier, it is easy to show thatY is nonempty, compact and convex.
From Corollary 2.1 in Benson and Boger [2], sinceY is a nonempty convex set
and, for eachj = 1,2, . . . , p, the functionhj(y) = yj is positive and concave on
Y , it follows thatg is quasiconcave onY . 2

Using Lemma 2.1 and the definition ofY , we obtain the following theorem.

THEOREM 2.1. Problem (PY ) has a global optimal solution inYex. Any global
optimal solution to problem (PY ) is in ∂Y .

Proof.From [6], wheng is continuous on<p and quasiconcave on the nonempty,
compact convex setY , the global minimum ofg overY is attained at some extreme
point ofY . Together with Lemma 2.1, this proves the first statement of the theorem.

To prove the second statement of the theorem, lety∗ be a global optimal solution
for problem (PY ), and suppose, to the contrary, thaty∗ /∈ ∂Y . Theny∗ ∈ (intY ), so
that we may choose a pointx̄ ∈ D such thatf (x̄) < y∗ < ŷ. Sincex̄ ∈ D,0 <
f (x̄). As a result, if we set̄y = f (x̄), it follows thatȳ ∈ Y and

p∏
j=1

ȳj <

p∏
j=1

y∗j .

By the definition (1) ofg, this contradicts the fact thaty∗ is a global optimal
solution for problem (PY ). 2

From Theorem 2.1, any global optimal solution to problem (PY ) must belong to
∂Y . Although, as we shall see below, problem (PD) is equivalent to problem (PY ),
problem (PD) neednot have a global optimal solution on the boundary ofD. For
instance, letp = 2,D = {(x1, x2)|06 xj 6 6, j = 1,2},

f1(x1, x2) = (x1− 2)2+ 1

and

f2(x1, x2) = (x2− 4)2+ 1

in problem (PD). Then the unique global optimal solutionx∗ to problem (PD) is
given byx∗T = (2,4) which does not lie on the boundary ofD.

THEOREM 2.2. Problem (PD) is equivalent to problem (PY ) in the following
sense: Ify∗ is a global optimal solution for problem (PY ), then anyx∗ ∈ D

such thatf (x∗) 6 y∗ is a global optimal solution for problem (PD), andφ =
g(y∗) = ∏p

j=1 fj(x
∗). Conversely, ifx∗ is a global optimal solution for prob-

lem (PD), theny∗ = f (x∗) is a global optimal solution for problem (PY ), and
φ = g(y∗) =∏p

j=1 fj (x
∗).
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Proof. Let y∗ be a global optimal solution for problem (PY ), and letx∗ ∈ D
satisfyf (x∗) 6 y∗. Assume that for somex ∈ D,∏p

j=1 fj (x) <
∏p

j=1 fj (x
∗).

Then, since 0< f (x∗) 6 y∗, this implies that

p∏
j=1

fj (x) <

p∏
j=1

fj(x
∗) 6

p∏
j=1

y∗j . (2)

Let y = f (x). Sincex ∈ D, by the choice ofŷ, it follows that y ∈ Y . From
(2),

∏p

j=1 yj <
∏p

j=1 y
∗
j is also true. By (1), the latter two statements together

contradict the fact thaty∗ is a global optimal solution to problem (PY ). Therefore,
the assumption that for somex ∈ D,∏p

j=1 fj (x) <
∏p

j=1 fj (x
∗) is false, so that

x∗ is a global optimal solution for problem (PD) andφ =∏p

j=1 fj (x
∗).

Let ȳ = f (x∗). Then, sincêy > f (x∗) andx∗ ∈ D, this implies thatȳ ∈ Y .
If ȳ 6 y∗ and ȳ 6= y∗ were to hold, then, sincēy > 0, by (1),g(ȳ) < g(y∗)
would hold, andy∗ would not be a global optimal solution for problem (PY ). Since
ȳ 6 y∗, this implies thatȳ = y∗ must hold. By (1), sincēy = f (x∗) andφ =∏p

j=1 fj (x
∗), it follows thatg(y∗) = φ.

To show the converse statement, letx∗ be a global optimal solution for problem
(PD), and lety∗ = f (x∗). Assume that for somey ∈ Y, g(y) < g(y∗). Since
y ∈ Y , we may choose anx ∈ D such thatf (x) 6 y. Becausex ∈ D,0 < f (x).
As a result,

∏p

j=1 fj(x) 6
∏p

j=1 yj . By (1), sinceg(y) < g(y∗), this implies that

p∏
j=1

fj (x) 6
p∏
j=1

yj <

p∏
j=1

y∗j .

Sincey∗ = f (x∗), this implies that
∏p

j=1 fj (x) <
∏p

j=1 fj (x
∗). Becausex ∈ D,

this contradicts thatx∗ is a global optimal solution for problem (PD). Therefore,
the assumption thatg(y) < g(y∗) for somey ∈ Y is false.

By the definitions ofY andŷ, sincex∗ ∈ D andy∗ = f (x∗), y∗ ∈ Y . Combined
with the fact thatg(y) > g(y∗) for all y ∈ Y , this implies thaty∗ is a global optimal
solution for problem (PY ). Moreover, by (1), sincey∗ = f (x∗) andx∗ is a global
optimal solution for problem (PD), φ = g(y∗) =∏p

j=1 fj (x
∗). 2

3. Outer approximation, branching, and bounding operations

In addition to the assumptions for problem (PD) given in the Introduction, we will
assume henceforth that

D = {x ∈ <n|gi(x) 6 0, i = 1,2, . . . , m},
where, for eachi = 1,2, . . . , m, gi : <n → < is a finite, convex, differenti-
able function. We will also assume that there exists a pointα ∈ <n that satisfies
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gi(α) < 0, i = 1,2, . . . , m, and that for eachj = 1,2, . . . , p, the functionfj is
differentiable.

To solve problem (PY ), the branch and bound-outer approximation algorithm
performs several key operations in outcome space. This section explains these
operations.

3.1. OUTER APPROXIMATION

The algorithm constructs a set of one or more nonempty, decreasing polytopes
containingY that serve as outer approximations toY . The first such polytopeZ0 is
given by the rectangle

Z0 = {y ∈ <p|06 y 6 ŷ}.
At the beginning of a typical iterationk > 1 of the algorithm, we have available

from the previous iteration a nonempty polytopeZk−1 ⊆ <p that containsY and a
point yk−1 ∈ Zt for somet 6 k − 1. The pointyk−1 may or may not belong toY .
It is found as part of the lower bounding operation in iterationk − 1, as we shall
see later.

Assume thatk > 1. In iterationk, to construct a polytopeZk ⊆ <p that satisfies
Y ⊆ Zk ⊆ Zk−1, first the convex nonlinear program(T (y)) given by

(T (y)) minλ,

s.t.

f (x)− λ(yI − y)− y6 0,

gi(x) 6 0, i = 1,2, . . . , m,

0 6 λ 6 1,

is solved, withy set equal toyk−1, for an optimal solution(xk
T

, λk), whereyI ∈ <p
is a vector inY prechosen in the algorithm to satisfyf (x) < yI < ŷ for some
x ∈ D. This yields a pointwk = λk(yI −yk−1)+yk−1. It is easy to show that when
λk = 0, wk = yk−1 ∈ Y , and, whenλk > 0, wk ∈ ∂Y andyk−1 /∈ Y .

Whenλk = 0, the outer approximating polytopeZk is given byZk = Zk−1,
i.e., a new outer approximating polytope toY is not constructed in iterationk.

Whenλk > 0, the algorithm finds a supporting hyperplaneE to Y atwk ∈ ∂Y
of the form

E = {y ∈ <p|〈u, y − wk〉 = 0}.
Furthermore, the algorithm chooses the valueû of u in E in such a way that for all
y ∈ Y ,

〈û, y − wk〉 > 0 (3)
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and

〈û, yk−1 − wk〉 < 0. (4)

Subsequently, the new containing polytopeZk is constructed via the formula

Zk = Zk−1 ∩ {y ∈ <p|〈û, y − wk〉 > 0}.
In this way,Zk satisfiesY ⊆ Zk ⊆ Zk−1. Notice thatyk−1 /∈ Zk and thatZk is
obtained fromZk−1 by seeking to “cut off” a portion ofZk−1 via the inequality (3).
For a construction ofZk of this type for the case whereY is polyhedral, see [28].

To find a vectorû ∈ <p that satisfies (3) and (4), the algorithm finds any values
for the vectorsu ∈ <p andv ∈ <m that satisfy the system

u, v > 0, (5)∑
j∈B

uj = 1, (6)

p∑
j=1

uj [∇fj (xk)] +
m∑
i=1

vi[∇gi(xk)] = 0, (7)

uj [fj (xk)− wkj ] = 0, j = 1,2, . . . , p, (8)

and

vigi(x
k) = 0, i = 1,2, . . . , m, (9)

and setŝu = u, where

B = {j ∈ {1,2, . . . , p}|fj (xk) = wkj },
and, for any functionh,∇h denotes the gradient ofh. The next result validates this
portion of the outer approximation operation.

THEOREM 3.1. Assume thatλk > 0. Then there exist vectorsu ∈ <p andv ∈
<m, whereu 6= 0, that satisfy (5)–(9). Furthermore, if (û, v̂) satisfies (5)–(9), then
(a) û 6= 0;
(b) û satisfies (3) for ally ∈ Y ;
(c) û satisfies (4).

Proof.Consider the convex nonlinear program (TH ) given by

(T H) minθ,

s.t.

f (x)− eθ − wk 6 0,

gi(x) 6 0, i = 1,2, . . . , m,
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wherex ∈ <n andθ ∈ < are the variables ande ∈ <p is the vector of ones. By
definition ofα, we may choosēθ ∈ < so that

f (α)− eθ̄ − wk < 0

and

gi(α) < 0, i = 1,2, . . . , m.

Sincefj : <n → <, j = 1,2, . . . , p, andgi : <n → <, i = 1,2, . . . , m, are
finite, convex, differentiable functions, this implies that Slater’s Constraint Qual-
ification holds for problem (TH ) (e.g., see Mangasarian [20]). Notice also that
since (xk

T

, λk) is an optimal solution to problemT (yk−1), whereλk > 0, (xT , θ) =
(xk

T

,0) is an optimal solution for problem (TH).
Using the Kuhn–Tucker–Karush necessary conditions for problem (TH ) at

(xk
T
,0) [20], it is easy to show that there existu ∈ <p andv ∈ <m such that

p∑
j=1

uj = 1 (10)

and which together satisfy (5) and (7)–(9). By (5) and (10), for any such vectors,
u 6= 0 must hold. Furthermore, by (8), (10), the definition ofB, and the feasibility
of (xk

T

,0) in problem (TH), (6) will also hold. As a result, there exist vectors
u ∈ <p andv ∈ <m, whereu 6= 0, that together satisfy (5)–(9).

Now suppose that (û, v̂) satisfies (5)–(9). Notice that since(xk
T

, λk) is an op-
timal solution to problemT (yk−1) with λk > 0,B is nonempty. By (5) and (6), this
implies thatû 6= 0.

For anyx ∈ <n, let gm(x) denote[g1(x), g2(x), . . . , gm(x)] and letd : <n →
< be defined for eachx ∈ <n by

d(x) = 〈û, f (x)〉 + 〈v̂, gm(x)〉,
where 〈·, ·〉 denotes the inner product. Then, by (5), since each entry inf (x)

andgm(x) is a finite, convex, differentiable function,d is also finite, convex, and
differentiable. From (7), this implies that

d(x) > d(xk)

for anyx ∈ <n. From (8) and (9) and the definition ofd, this inequality may be
equivalently written

〈û, f (x)〉 + 〈v̂, gm(x)〉 > 〈û, wk〉. (11)

Whenx ∈ D, gm(x) 6 0. By (5) and (11), this implies that for anyx ∈ D,

〈û, f (x)〉 > 〈û, wk〉. (12)
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Let ȳ ∈ Y . Then we may choose a pointx̄ ∈ D such thatf (x̄) 6 ȳ. By (5),
this implies that〈û, ȳ − f (x̄)〉 > 0. From (12), sincēx ∈ D, 〈û, f (x̄)− wk〉 > 0.
Adding the inequalities in the previous two sentences, we obtain that〈û, ȳ−wk〉 >
0. By the choice of̄y, this implies that (3) holds for ally ∈ Y .

By definition ofyI , we may choose a pointxI ∈ D such thatf (xI ) < yI . Thus,
for δ ∈ {t ∈ <|0 < t < 1} sufficiently small,[f (xI ) − yI ] + δ[yI − yk−1] 6 0.
This implies that

f (xI )− (1− δ)(yI − yk−1)− yk−1 6 0,

so that(x, λ) = (xI ,1−δ) is a feasible solution for problem(T (yk−1)). Therefore,
λk 6 (1− δ) < 1.

Define a linear functionβ : Y → < for eachy ∈ Y by

β(y) = 〈û, y − wk〉.
By definition ofyI , we may choose a pointxI ∈ D such thatf (xI ) < yI < ŷ. As
a result, forε > 0 sufficiently small,

f (xI ) 6 yI − εû < ŷ,
so that(yI − εû) ∈ Y . Therefore, since (3) holds for ally ∈ Y ,

0 6 β(yI − εû)
= 〈û, yI − εû− wk〉
= 〈û, yI − wk〉 − ε〈û, û〉
= β(yI )− ε〈û, û〉.

Sinceε and〈û, û〉 are strictly positive, this implies thatβ(yI ) > 0.
Becausewk = λkyI + (1−λk)yk−1 belongs toY andβ is linear onY , it follows

that

β(wk) = λkβ(yI )+ (1− λk)β(yk−1). (13)

By definition ofβ, β(wk) = 0. Since 0< λk < 1 andβ(yI ) > 0, this, together
with (13), implies that

β(yk−1) = −[λkβ(yI )/(1− λk)]
is negative. As a result, from the definition ofβ, it follows that (4) holds. 2

An efficient linear programming procedure for calculating valuesu = û and
v = v̂ that together satisfy (5)–(9) will be explained in Section 5.
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3.2. BRANCHING

The algorithm performs a branching process in outcome space that iteratively par-
titions a rectangleH 0 containingY into subrectangles. This process helps the
algorithm identify the location inY of an optimal solution to problem (PY ).

To help explain the branching process, we will need the following definition.

DEFINITION 3.1 [7]. LetQ be a subset of<p and letJ be a finite set of indices.
A set{Mj, j ∈ J } of subsets ofQ is said to be apartition of Q when

(a) Q =
⋃
j∈J

Mj

and

(b) Mi ∩Mj = ∂rMi ∩ ∂rMj for all i, j ∈ J, i 6= j,
where∂rMi denotes the (relative) boundary ofMi .

During each iteration of the algorithm, a more refined partition is constructed
of a portion ofH 0 that contains an optimal solution to problem (PY ).

The initial rectangleH 0 containingY in the branching operation is given by

H 0 = Z0 = {y ∈ <p|06 y 6 ŷ}.
Notice thatH 0 is p-dimensional, since 0< ŷ. The initial partitionP 0 consists
of simplyH 0, since at the beginning of the algorithm, we cannot yet exclude any
portion ofH 0 from consideration. This partitionP 0 is given by

P 0 = {H 0}.
Let k > 1. At the beginning of stepk of the algorithm, we have available a parti-
tion P k−1, consisting ofp-dimensional rectangles, of a portion ofH 0 that cannot
yet be excluded on the basis of it not containing an optimal solution for problem
(PY ). Also available is a memberHk−1 of P k−1 chosen in stepk − 1 for further
examination.

During stepk, the branching process subdividesHk−1 into twop-dimensional
subrectangles of equal volume. This subdivision is accomplished by a process
called rectangular bisection, which is defined as follows.

DEFINITION 3.2. LetW be ap-dimensional rectangle in<p given by

W = {y ∈ <p|a 6 y 6 b},
wherea, b ∈ <p anda < b. Suppose that

(bi − ai) = max{(bj − aj )|j ∈ J },
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whereJ = {1,2, . . . , p}. Letm ∈ <p be defined by

mj =
{
aj , if j 6= i
(ai + bi)/2, if j = i.

Then{W1,W2} is called arectangular bisectionof W , whereW1 andW2 are the
p-dimensional rectangles given by

W1 = {y ∈ <p|aj 6 yj 6 bj , j ∈ J\{i}, ai 6 yi 6 mi}
and

W2 = {y ∈ <p|aj 6 yj 6 bj , j ∈ J\{i},mi 6 yi 6 bi}.
Notice in Definition 3.2 thatm is the midpoint of a longest edge ofW . From Horst
and Tuy [7], the rectangular bisection{W1,W2} in Definition 3.2 forms a partition
of W in the sense of Definition 3.1.

Let {H̄ , ¯̄H } denote the rectangular bisection ofHk−1 formed by the branching
process in stepk. Then the partitionP k of the portionH 0\F ofH 0 not yet excluded
from consideration is

P k = {H ∈ (P k−1\Hk−1)|H /∈ F }
⋃
{H ∈ H̄ , ¯̄H }|H /∈ F }, (14)

whereF denotes the current set of rectangles that have been eliminated from con-
sideration as possible regions for containing a global optimal solution to problem
(PY ). We will see howF is derived and maintained in the next subsection.

For purposes of analyzing convergence, we need the following definition and
theorem (cf. Horst and Tuy [7]).

DEFINITION 3.3. LetW be a subset of<p, and let{P k} denote a sequence of
partitions ofW such that for eachk, each element ofP k+1 is formed by partitioning
some element ofP k. Let {Mk} denote an arbitrary sequence of partition elements
such that for eachk,Mk ∈ P k andMk+1 is a strict subset ofMk. The set of
partitions {P 1, P 2, . . . } is calledexhaustivewhen limkM

k = ∩kMk = {q} for
some single pointq ∈ <p.

THEOREM 3.2. LetW be ap-dimensional rectangle in<p. Let {P k} denote a
sequence of partitions ofW such that, for eachk = 1,2, . . . , each element of
P k+1 is formed by creating a rectangular bisection of some element ofP k. Then
the set{P 1, P 2, . . . } is exhaustive.

3.3. BOUNDING

Three types of bounds are computed by the algorithm. The first is a local lower



326 HAROLD P. BENSON

bound for the objective functiong of problem (PY ) over (Y ∩ H), whereH is a
givenp-dimensional rectangle in<p. This local lower bound is a numberLB(H)
that satisfies

LB(H) 6 g(y) for all y ∈ (Y ∩H).
In the algorithm,LB(H) is computed forH = H 0 and for each rectanglêH

formed via rectangular bisection ofHk−1 for eachk = 1,2, . . . (cf. Section 3.2).
Recall from Subsection 3.2 that

H 0 = {y ∈ <p|06 y 6 ŷ},
andY ⊆ H 0. Therefore, a simple lower bound forg over(Y ∩ H 0) is given by 0.
In the algorithm,LB(H 0) is set equal to 0.

Let k satisfy k > 1. In stepk of the algorithm,Hk−1 is subdivided into two
rectangles via rectangular bisection. We may assume that each of these rectangles
is of the form

Ĥ = {h ∈ <p|h1 6 h 6 h2},
where 06 h1 < h2. The lower boundLB(Ĥ ) for g over(Y ∩ Ĥ ) computed by the
algorithm is given by

LB(Ĥ ) = max{L̂B(Ĥ ), LB(Hk−1)}, (15)

where the rule for findinĝLB(Ĥ ) depends upon whether or noth1 ∈ (Zk ∩ Ĥ ).
If h1 ∈ (Zk ∩ Ĥ ), thenL̂B(Ĥ ) is given by

L̂B(Ĥ ) =
p∏
j=1

h1
j . (16)

Notice that ifL̂B(Ĥ ) is given by (16), then

L̂B(Ĥ ) 6 g(y) for all y ∈ (Y ∩ Ĥ ). (17)

To see this, leth1 ∈ (Zk ∩ Ĥ ). SinceY ⊆ Zk, (Y ∩ Ĥ ) ⊆ (Zk ∩ Ĥ ). Therefore,
the minimum value ofg over (Zk ∩ Ĥ ) is a lower bound forg over (Y ∩ Ĥ ).
Furthermore, sinceh1 ∈ (Zk ∩ Ĥ ), it is easy to see that the minimum value ofg
over(Zk ∩ Ĥ ) is equal tog(h1). The previous two statements together imply that

g(h1) =
p∏
j=1

h1
j 6 g(y) for all y ∈ (Y ∩ Ĥ ). (18)

Taken together, (16) and (18) show that (17) holds.
Whenh1 /∈ (Zk ∩ Ĥ ), LB(Ĥ ) is again given by (15), but a different method is

used to calculate the value of̂LB(Ĥ ). This method relies upon an underestimating



AN OUTCOME SPACE ALGORITHM 327

functionq : <p → < for g onĤ . For anyy ∈ <p, the value of this underestimating
function is given by

q(y) = max{q1(y), q2(y)}, (19)

whereq1(y) andq2(y) are linear functions ofy given by the formulas

q1(y) =
p∑
j=1

 p∏
i=1
i 6=j

h1
i

 yj −
[
(p − 1)

p∏
i=1

h1
i

]
(20)

and

q2(y) =
p∑
j=1

 p∏
i=1
i 6=j

h2
i

 yj −
[
(p − 1)

p∏
i=1

h2
i

]
, (21)

respectively. Notice that forp = 2, (19)–(21) gives theconvex envelopeof g over
Ĥ [23].

THEOREM 3.3. If y ∈ Ĥ thenq(y) 6 g(y).
Proof. To prove the theorem, we will show that ify ∈ Ĥ , thenq1(y) 6 g(y)

andq2(y) 6 g(y).
Suppose thaty ∈ Ĥ . To show thatq1(y) 6 g(y), we will use induction onp.

Forp = 2, q1(y) 6 g(y) follows from McCormick [23].
Let us hypothesize, then, that for an arbitrary valuek of p, q1(y) 6 g(y). Set

p = k + 1 in (20). Then, sincey ∈ Ĥ ,

(yk+1 − h1
k+1) > 0

and

k∏
t=1

yt >
k∏
t=1

h1
t .

It follows that

(yk+1 − h1
k+1)

(
k∏
t=1

yt −
k∏
t=1

h1
t

)
> 0. (22)
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Therefore,

k+1∏
t=1

yt > h1
k+1

(
k∏
t=1

yt

)
+
(

k∏
t=1

h1
t

)
yk+1 −

k+1∏
t=1

h1
t

> h1
k+1

 k∑
t=1

 k∏
i=1
i 6=t

h1
i

yt − (k − 1)
k∏
i=1

h1
i

+
(

k∏
t=1

h1
t

)
yk+1−

k+1∏
t=1

h1
t

=

 k∑
t=1

k+1∏
i=1
i 6=t

h1
i

 yt
+

 k+1∏
t=1
t 6=k+1

h1
t

 yk+1− k
k+1∏
t=1

h1
t

=
k+1∑
t=1

k+1∏
i=1
i 6=t

h1
i

 yt − k k+1∏
t=1

h1
t , (23)

where the first inequality follows from (22), and the second inequality follows from
h1
k+1 > 0 and the induction hypothesis. Using (1) and (20), from (23) it follows

that forp = k + 1, g(y) > q1(y).
By induction onp, we conclude that for all values ofp, if y ∈ Ĥ , thenq1(y) 6

g(y). The fact thatq2(y) 6 g(y) for all y ∈ Ĥ can be similarly shown by induction,
so that the theorem is proved. 2

Whenh1 /∈ (Zk ∩ Ĥ ), L̂B(Ĥ ) is set equal to the optimal value of the nonlinear
programming problem

min q(y), s.t.y ∈ (Zk ∩ Ĥ ). (24)

Since(Zk ∩ Ĥ ) ⊇ (Y ∩ Ĥ ), from Theorem 3.3, with this value for̂LB(Ĥ ), the
inequality (17) is satisfied. Notice that̂LB(Ĥ ) = +∞ when(Zk ∩ Ĥ ) = ∅.

We have seen that whetherh1 ∈ (Zk ∩ Ĥ ) or h1 /∈ (Zk ∩ Ĥ ), the algorithm
computeŝLB(Ĥ ) so that (17) holds. From (15), it will follow that

LB(Ĥ ) 6 g(y) for all y ∈ (Y ∩ Ĥ ), (25)

as required by the algorithm, if for eachk > 1,

LB(Hk−1) 6 g(y) for all y ∈ (Y ∩ Ĥ ). (26)

To see that (26) holds for allk > 1 and ally ∈ (Y ∩ Ĥ ), let y be an arbitrary
element of(Y ∩ Ĥ ). Then, fork = 1, we have already shown that (26) holds.
Choose anys > 1, and suppose that (26) holds for allk = 1,2, . . . , s − 1. Notice
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thatHs−1 is the immediate offspring of some rectangleHt , where 06 t < (s−1).
From (15), this implies that

LB(Hs−1) = max{L̂B(H s−1), LB(H t)}.
Therefore,LB(Hs−1) equals eitherL̂B(H s−1) or LB(H t). If LB(Hs−1) =
L̂B(H s−1), then, by (17), we may apply (25) witĥH = Hs−1. Upon doing so,
we see that (26) holds withk = s. Otherwise,LB(Hs−1) = LB(H t) will hold.
By hypothesis,LB(H t) 6 g(y). SinceLB(Hs−1) = LB(H t), this implies that
(26) again holds withk = s. Therefore, by induction onk and the choice ofy, (26)
holds for allk > 1 and ally ∈ (Y ∩ Ĥ ).

The property given in the next result shows thatq andg are equal at certain
points ofĤ .

COROLLARY 3.1. Let Ĥ = {h ∈ <p|h1 6 h 6 h2}, and letq : <p → < be
defined by (19)–(21). Thenq(y) = g(y) for all y ∈ {h1} ∪N1 ∪ {h2} ∪N2, where,
for eachi = 1,2, Ni denotes the set of all extreme points ofĤ adjacent tohi.

Proof.We will prove the corollary fori = 1. The proof fori = 2 is similar and
will not be given.

Let y = h1. Then, from (20),

q1(y) = q1(h
1)

=
p∑
j=1

 p∏
i=1
i 6=j

h1
i

 h1
j −

[
(p − 1)

p∏
i=1

h1
i

]

= pg(h1)− (p − 1)g(h1)

= g(h1). (27)

Now let yT = (h1
1, h

1
2, . . . , h

1
t−1, h

2
t , h

1
t+1, . . . , h

1
p) wheret ∈ {1,2, . . . , p}.

Then, from (20),

q1(y) =
p∑
j=1
j 6=t

 p∏
i=1
i 6=j

h1
i

 h1
j +

 p∏
i=1
i 6=t

h1
i

 h2
t −

[
(p − 1)

p∏
i=1

h1
i

]

= (p − 1)g(h1)+ g(y)− [(p − 1)g(h1)]
= g(y). (28)

From (27) and (28),q1(y) = g(y) for all y ∈ {h1} ∪N1. For allz ∈ Ĥ , by (19)
and Theorem 3.3,q(z) = max{q1(z), q2(z)} 6 g(z). The previous two statements
imply that if y ∈ {h1} ∪N1, then

q(y) = max{g(y), q2(y)} 6 g(y). (29)
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Choose anyy ∈ {h1} ∪N1. Then there are three possibilities, Case (1):q2(y) <

g(y), Case (2):q2(y) = g(y), and Case 3:q2(y) > g(y).
Case (1):q2(y) < g(y). From (29), this implies thatq(y) = max{g(y), q2(y)} =

g(y).
Case (2):q2(y) = g(y). Then from (29),q2(y) = g(y) = max{g(y), q2(y)} =

q(y).
Case (3):q2(y) > g(y). Then, using (29), we obtain

g(y) < q2(y) 6 q(y) 6 g(y),

which is impossible. Therefore, this case cannot hold.
Summarizing, the arguments so far imply that for ally ∈ {h1} ∪ N1, q2(y) 6

g(y) = q1(y). From (19), this implies that for ally ∈ {h1} ∪N1, q(y) = g(y). 2
The second bound computed by the algorithm is a global lower bound for the

optimal objective function value of problem (PY ). In step 0 of the algorithm, this
lower bound is denotedLB(H 0) and is given byLB(H 0) = 0. For eachk > 1, in
stepk, this lower bound LB is computed via the equation

LB = min{LB(H̃ )|H̃ ∈ P k}, (30)

whereP k is given by (14). Subsequently, anŷH ∈ P k such thatLB = LB(Ĥ) is
chosen, andHk is set equal toĤ .

The third bound computed by the algorithm at stepk > 0 is a global upper
boundUBk for the optimal objective function value of problem (PY ). For each
k > 0, UBk = g(yc), whereyc is the incumbentfeasible solution for problem
(PY ), i.e., among all feasible solutions for problem (PY ) found through any point
in the algorithm,yc achieves the smallest value ofg.

The setF is the set offathomedsubrectanglesĤ of H 0. When, in some step
k > 1, the algorithm detects that

LB(Ĥ ) > UBk

for some subrectanglêH ⊆ H 0, Ĥ is added toF . Subrectangles inF cannot
contain global optimal solutions to problem (PY ).

The validity of (30) as a global lower bound for the optimal value of problem
(PY ) and of the rules for calculatingUBk, k > 0, and maintainingF can be
shown quite easily by using standard branch and bound arguments from global
optimization [7].

4. The algorithm

Based upon the results and operations given in Sections 2 and 3, the new outcome
space algorithm for problem (PD) may be stated as follows.
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OUTCOME SPACE ALGORITHM

Step 0. Chooseε > 0. Find pointsxI ∈ D andyI ∈ <p such thatŷ > yI >

f (xI ). SetUB0 = g(yI ), yc = yI andxc = xI . SetF = ∅, and setH 0 = Z0 =
{y ∈ <p|0 6 y 6 ŷ}. SetP 0 = {H 0}, LB = LB(H 0) = 0, andy0 = 0 ∈ <p. Set
k = 1 and go to stepk.

Step k.k > 1.
Step k.1. SetUBk=UBk−1. Find an optimal solution(xk

T

, λk) to the convex
nonlinear programming problem(T (y)) with y = yk−1.

Step k.2. Setwk = λk(y
I − yk−1) + yk−1. If g(wk) < UBk, setUBk =

g(wk), yc = wk, xc = xk , andF = F ∪ {Ĥ ∈ P k−1|LB(Ĥ ) > UBk}, and
continue. Ifg(wk) > UBk, continue.

Step k.3. If UBk−LB 6 ε, STOP:xc is a globalε-optimal solution for problem
(PD), andyc is a globalε-optimal solution for problem (PY ). Otherwise, ifλk > 0,
go to stepk.4, and, ifλk = 0, setZk = Zk−1 and go to stepk.6.

Step k.4. Find any values for the vectorsu ∈ <p andv ∈ <m that satisfy (5)–(9).
Step k.5. Set

Zk = Zk−1 ∩ {y ∈ <p|〈u, y − wk〉 > 0}.
Step k.6. SubdivideHk−1 into twop-dimensional rectangles̄H , ¯̄H ⊆ <p via the

rectangular bisection process.
Step k.7. For each of̂H = H̄ andĤ = ¯̄H , computeLB(Ĥ ) and a pointyĤ ∈ <p

as follows, where we assume without loss of generality thatĤ = {h ∈ <p|h1 6
h 6 h2} for someh1, h2 ∈ <p such that 06 h1 < h2.

Case 1:h1 ∈ (Zk ∩ Ĥ ). SetyĤ = h1 and, withL̂B(Ĥ ) = g(h1), setLB(Ĥ) =
max{L̂B(Ĥ ), LB(Hk−1)}.

Case 2:h1 /∈ (Zk ∩ Ĥ ). SetL̂B(Ĥ ) equal to the optimal value of problem (24),
and, if L̂B(Ĥ ) 6= +∞, setyĤ equal to any optimal solution to (24). Then, set
LB(Ĥ) = max{L̂B(Ĥ ), LB(Hk−1)}.

Step k.8. For each of̂H = H̄ andĤ = ¯̄H , if LB(Ĥ ) > UBk, setF = F ∪ {Ĥ }.
Set

P k =
{
H ∈ [ (P k−1\{Hk−1})

⋃
{H̄ , ¯̄H } ] |H /∈ F

}
.

Step k.9. Set

LB = min{LB(H̃ )|H̃ ∈ P k}.
Choose anyĤ ∈ P k that satisfiesLB = LB(Ĥ ). SetHk = Ĥ andyk = yĤ . Set
k = k + 1 and go to stepk.

We shall soon see that except for stepk.1, the steps of the Outcome Space
Algorithm can be implemented by simple algebraic calculation and linear program-
ming. First, we will give the convergence properties of the algorithm.

The main convergence property of the algorithm is given in the following result.
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THEOREM 4.1. Suppose that the algorithm is infinite. Then it generates a se-
quence{wk} of feasible solutions for problem (PY ), every accumulation point of
which is a global optimal solution for problem (PY ), and

lim
k→∞ UBk = lim

k→∞ LB(H
k) = φ.

Proof.See Appendix.

A solution x̄ is said to be aglobal ε-optimalsolution for problem (PD), where
ε > 0 is a given number, when̄x ∈ D andφ 6

∏p

j=1 fj (x̄) 6 φ + ε. A global
ε-optimalsolution for problem (PY ) is defined similarly.

By the following result, whenε is chosen in step 0 to be positive, the algorithm
will be finite and will yield globalε-optimal solutions for both problems (PD) and
(PY ).

COROLLARY 4.1. If ε > 0, then the algorithm is finite and terminates in some
stepk̂, wherek̂ > 1. In this case, upon terminationxc is a globalε-optimal solution
for problem (PD), andyc is a globalε-optimal solution for problem (PY ).

Proof. Let ε > 0, and suppose, to the contrary, that the algorithm is infinite.
Then, by Theorem 4.1,

lim
k→∞

UBk = lim
k→∞

LB(Hk) = φ. (31)

Notice that for eachk > 1,LB(Hk) is equal to the value ofLB in step (k + 1.3) of
the algorithm. Therefore, it follows from (31), sinceε > 0, that there will exist an
integerk̄ sufficiently large such thatUBk̄ − LB < ε is satisfied in step̄k.3 of the
algorithm. Since the algorithm will terminate in this case, we have a contradiction
to the assumption that the algorithm is infinite. Thus, it must be finite. Letk̂ > 1
denote the terminal step of the algorithm.

At the termination of the algorithm,UBk̂ = g(yc). From stepk̂.3, this implies

that g(yc) − LB(H k̂−1) 6 ε. From Section 3.3,LB(Hk̂−1) is a lower bound for
the optimal objective function value of problem (PY ). By Theorem 2.2, the optimal
objective function value of problem (PY ) is φ. Taken together, the previous three
observations imply thatg(yc) 6 φ + ε. Sinceyc ∈ Y, φ 6 g(yc). Thus, we have
shown thatφ 6 g(yc) 6 φ+ε andyc ∈ Y , which together imply thatyc is a global
ε-optimal solution for problem (PY ).

For eachk > 1, by stepk.1, xk ∈ D. This implies by step 0 and by step
k.2 thatxc ∈ D at the termination of the algorithm. By assumption, sincexc ∈
D,f (xc) > 0. For eachk > 1, from stepk.1, we know thatf (xc) 6 wk. From
stepk.2, this implies thatf (xc) 6 yc at the algorithm’s termination. From the
previous paragraph,g(yc) 6 φ + ε. Since 0< f (xc) 6 yc, this implies that∏p

j=1 fj (x
c) 6 g(yc) 6 φ + ε. Furthermore, sincexc ∈ D,φ 6∏p

j=1 fj (x
c). We

have thus shown thatφ 6
∏p

j=1 fj (x
c) 6 φ + ε andxc ∈ D, which together imply

thatxc is a globalε-optimal solution for problem (PD). 2
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5. Computational issues

To initiate the Outcome Space Algorithm, a finite vectorŷ ∈ <p must be available
that, for eachj = 1,2, . . . , p, satisfies

ŷj > maxfj (x), s.t. x ∈ D. (32)

In some cases,̂y can be immediately estimated by simply examining the particular
functionsfj , j = 1,2, . . . , p, and feasible regionD involved in the instance of
problem (PD) in question. When this is not possible, an efficient computational
procedure is available for determiningŷ. This procedure avoids the need to solve
thep convex maximization problems in (32). It is based upon the following two
results.

THEOREM 5.1. LetM ∈ < andv0 ∈ <n satisfy

M > max〈ē, x〉, s.t.x ∈ D
and

v0
t = minxt , s.t.x ∈ D,

for each t = 1,2, . . . , n, where ē ∈ <n denotes the vector of ones. Letγ =
M − 〈ē, v0〉, and definevi ∈ <n, i = 1,2, . . . , n, by

vij =
{
v0
j , if j 6= i,
v0
j + γ if j = i.

Then the convex hullS of v0, v1, . . . , vn is ann-dimensional simplex with vertex
set{v0, v1, . . . , vn}, andS ⊇ D.

Proof. Sinceγ 6= 0, {(vt − v0)|t = 1,2, . . . , n} is a linearly independent set.
Therefore,{v0, v1, . . . , vn} is an affinely independent set. By definition,S is thus
ann-dimensional simplex with vertex set{v0, v1, . . . , vn}.

Suppose that̄x ∈ D. Then, by definition ofv0, (x̄−v0) > 0. Furthermore, from
the definition ofM, sincex̄ ∈ D,

〈ē, x̄ − v0〉 < M − 〈ē, v0〉. (33)

By definition ofγ , since(x̄ − v0) > 0, this implies that for eacht = 1,2, . . . , n,

06 (x̄ − v0)t < γ. (34)

Therefore, we may chooseα1, α2, . . . , αn such that for eacht = 1,2, . . . , n,
06 αt < 1 and

(x̄ − v0)t = αtγ . (35)
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From the definitions ofvt , t = 1,2, . . . , n, this implies that

x̄ = v0+
n∑
t=1

αt(v
t − v0)

=
(

1−
n∑
t=1

αt

)
v0+

n∑
t=1

αtv
t . (36)

From (33) and (35) and the definition ofγ ,

γ

n∑
t=1

αt 6 M − 〈ē, v0〉 = γ.

Since, by (34),γ > 0, this implies that(1−∑n
t=1αt ) > 0. Therefore, from (36),

sinceαt > 0, t = 1,2, . . . , n, x̄ is in the convex hull ofvt , t = 0,1, . . . , n, i.e.,
x̄ ∈ S. Thus,D ⊆ S, and the proof is complete. 2
COROLLARY 5.1. Any finite vector̂y ∈ <p that satisfies

ŷj > max{fj (vi)|i = 0,1, . . . , n}
for eachj = 1,2 . . . , p, also satisfies (32), wherevi, i = 0,1, . . . , n, are defined
in Theorem 5.1.

Proof.From Theorem 5.1 and Martos [21], for eachj = 1,2, . . . , p, sincefj
is a convex function overS,

max{fj (x)|x ∈ S} = max{fj(vi)|i = 0,1, . . . , n}.
Since, by Theorem 5.1,S ⊇ D, for eachj = 1,2, . . . , p, the left-hand side of the
equation above equals or exceeds

max{fj (x)|x ∈ D}.
By the choice ofŷ, this implies that (32) holds. 2

From Theorem 5.1 and Corollary 5.1, a pointŷ that satisfies (32) can be ob-
tained by computing the verticesvi, i = 0,1, . . . , n, given in the theorem for the
containing simplexS of D and then using the corollary to find̂y. Notice that this
process involves solving(n+1) convex programming problems, each of which has
a simple linear objective function and the same feasible regionD.

Step 0 of the algorithm suggests setting bothH 0 andZ0 equal to

{y ∈ <p|06 y 6 ŷ}. (37)

Sincef (x) > 0 for all x ∈ D, this choice and the choice of̂y guarantee that
H 0 andZ0 containY . To speed convergence of the algorithm, however, it may be
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useful to initializeH 0 andZ0 with a smaller set containingY than (37). One option
for accomplishing this is to calculate, for eachj = 1,2, . . . , p,

mj = minfj (x), s.t.x ∈ D,
and to set bothH 0 andZ0 equal to

{y ∈ <p|m 6 y 6 ŷ},
wherem = (m1,m2, . . . , mp). While this option involves solvingp additional
convex programming problems, the savings that could be obtained thereby in speed-
ing convergence may in some cases make the option worthwhile.

For eachk > 1, stepk.4 calls for solving the feasible system (5)–(9) of equa-
tions (see stepk.4 and Theorem 3.1) involving the nonnegative variablesu ∈ <p
andv ∈ <m. This step can be implemented by linear programming methods as
follows. First, for eachj ∈ {1,2, . . . , p} such thatfj (xk) 6= wkj in (8), setuj = 0.
Next, for eachi ∈ {1,2, . . . , m} such thatgi(xk) 6= 0 in (9), setvi = 0. LetB (as
in Section 3) denote the indices ofu that arenot preset to 0, and letC denote the
indices ofv that arenot preset to 0. Now initiate the simplex method on the linear
program

max
∑
j∈B

uj ,

s.t. ∑
j∈B

uj 6 1,

∑
j∈B

uj [∇fj (xk)] +
∑
i∈C

vi[∇gi(xk)] = 0,

uj > 0, j ∈ B,
vi > 0, i ∈ C.

When the simplex method finds a feasible solution(û, v̂) to this linear program
with∑

j∈B
ûj = 1,

it is terminated. Then(u, v) defined by

uj =
{

0 if j /∈ B
ûj if j ∈ B

vi =
{

0 if i /∈ C
v̂i if i ∈ C
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satisfies (5)–(9).
Case 2 of stepk.7 of the algorithm calls for solving the nonlinear programming

problem (24). In particular, problem (24) calls for minimizing the nonlinear func-
tion q(y), given by (19), over a compact polyhedron(Zk ∩ Ĥ ). From (19), to solve
problem (24), the problem (LP)

min t,

s.t. t > q1(y),

t > q2(y),

y ∈ (Zk ∩ Ĥ )
can be solved instead. Sinceq1 andq2 are linear functions ofy, and since(Zk∩ Ĥ )
is a polyhedron, problem(LP ) is a linear programming problem. Thus, Case 2 of
stepk.7 can be implemented by linear programming methods.

The discussions in this section and the algorithm statement show that for each
k > 1, stepk of the Outcome Space Algorithm can be implemented by simple al-
gebraic calculations and linear programming, and by solving one convex nonlinear
program (cf. stepk.1).

6. Example

To illustrate the Outcome Space Algorithm, consider the problem (PD) with p =
n = 2, where

f1(x1, x2) = (x1− 2)2 + 1,

f2(x1, x2) = (x2− 4)2 + 1,

andD is defined by the constraints

g1(x) = 25x2
1 + 4x2

2 − 1006 0,

g2(x) = x1 + 2x2− 46 0.

Prior to initiating the algorithm,̂y = (18.0,38.0) was determined by the computa-
tional procedure suggested in Section 5.

Initialization: We chooseε = 0.025, xi = (0.585,0.837) ∈ D, andyI =
(3.0,11.0). ThenUB0 = g(yI ) = 33.0,yc = (3.0,11.0) andxc = (0.585,0.837).
We setF = ∅ and, using the suggestion in Section 5, we setH 0 = Z0 = {y ∈
<2|(1,1) 6 y 6 (18,38)}. We setP 0 = {H 0}, LB = LB(H 0) = 1, andy0 =
(1,1).

Step1: We setUB1=33.0. Then, solving the convex program(T (y)) with y =
(1,1) yields(x1, λ1) = (0.904,1.548,0.600). As a result, we determine thatw1 =
(2.200,7.000). Sinceg(w1) = 15.40< 33.0,UB1 is set equal to 15.40,yc is set
equal to (2.200, 7.000), andxc is set equal to (0.904, 1.548). SinceLB(H 0) =
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1 6> 15.40,F = F ∪ ∅ = ∅. BecauseUB1 − LB = 14.406<0.025, we do not
stop the algorithm. Instead, we determine thatλ1 = 0.600> 0. Using the linear
programming procedure given in Section 5, we find that(u, v) = (0.528, 0.472,
0.000, 1.157). Therefore,Z1 = {(y1, y2) ∈ <2|1 6 y1 6 18, 1 6 y2 6 38,
0.528y1 + 0.472y2 > 4.466}. Next, H 0 is subdivided by bisection intoH̄ =
{h ∈ <2|1 6 h1 6 18,19.5 6 h2 6 38} and ¯̄H = {h ∈ <2|1 6 h1 6
18,1 6 h2 6 19.5}. We find thatLB(H̄) = 19.5, yH̄=(1.00,19.50), and, via

the linear programming method given in Section 5, thatLB( ¯̄H)=7.564 andy
¯̄H=

(7.564, 1.000). SinceLB(H̄) > UB1=15.40, butLB( ¯̄H) 6>UB1, F is set equal to
{h ∈ <2|1 6 h1 6 18,19.56 h2 6 38}andP 1 is set equal to{{h ∈ <2|1 6 h1 6
18, 16 h2 6 19.5}}. As a result,LB = 7.564,H 1 = {h ∈ <2|1 6 h1 6 18,
16 h2 6 19.5}, andy1 = (7.564,1.000).

Step2: We setUB2 = 15.40. Withy = (7.564,1.000), the convex program
(T (y)) has optimal solution(x2, λ2) = (−0.2050,2.1025,0.36). The pointw2 is
found to be (5.921, 4.600). Sinceg(w2) = 27.2366> UB2, we next test for ter-
mination. Upon doing so, we find thatUB2−LB = 15.400−7.564= 7.8366<ε =
0.025. Continuing, we see thatλ2 = 0.36> 0. We therefore proceed to computing
(u, v) = (0.1771,0.8229,0.000,0.7810). As a result,Z2 = {(y1, y2) ∈ <2|1 6
y1 6 18, 16 y2 6 38, 0.528y1+0.472y2 > 4.466,0.1771y1+0.8229y2 > 4.833}.
SubdividingH 1 via bisection yieldsH̄ = {h ∈ <2|1 6 h1 6 18, 10.256 h2 6
19.50} and ¯̄H = {h ∈ <2|1 6 h1 6 18, 1.006 h2 6 10.25}. We find that

LB(H̄) = 10.25,yH̄ = (1.00,10.25), LB( ¯̄H) = 8.0, andy
¯̄H = (3.9690,5.0215).

We then setP 2 = {{h ∈ <2|1 6 h1 6 18, 10.25 6 h2 6 19.50}, {h ∈
<2|1 6 h1 6 18, 1.00 6 h2 6 10.25}},LB = min{10.25,8.00} = 8.00,
H 2 = {h ∈ <2|16 h1 6 18, 1.006 h2 6 10.25}, andy2 = (3.9690,5.0215).

The algorithm terminates in step 8 with globalε-optimal solutions for (PD) and
for (PY ) given by

x∗ = (1.8881967,1.0553269)

and

y∗ = (1.0125,9.6711),

respectively, whereε = 0.025. In addition, the terminal step shows that 9.7669887
6 φ 6 9.7919887.

7. Concluding remarks

We have presented a new algorithm for solving the Convex Multiplicative Program-
ming problem (PD). The algorithm, called the Outcome Space Algorithm, has the
following key advantages.

(1) By working in the outcome space<p of problem (PD) instead of in the
decision space<n, the algorithm economizes the computations required to solve
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the problem. This is mainly due to the fact thatp is typically much smaller than
n. The algorithm works in<p instead of<n by solving the problem (PY ), which is
equivalent to problem (PD), in order to solve problem (PD).

(2) In contrast to typical outer approximation algorithms, by combining branch
and bound with outer approximation (both in the outcome space), the algorithm
avoids computing the vertices of the successive polyhedra containing the setY

that are created by the outer approximation process. Avoiding such calculations is
known to yield considerable computational savings.

(3) Only one nonlinear convex programming problem need be solved per itera-
tion of the algorithm. The remaining operations in each iteration can be implemen-
ted by simple algebraic means and linear programming techniques.

For these reasons, we conclude that the Outcome Space Algorithm offers a
potentially very attractive option for solving convex multiplicative programming
problems.

Appendix

Proof of Theorem 4.1.Since the algorithm is infinite, it generates a sequence{yk}
of points that satisfiesyk ∈ Hk for eachk. We may assume that for eachk,Hk+1 ⊂
Hk i.e., that the sequence{Hk} isnested. By Theorem 3.2, limkH k = ∩kH k = {ȳ}
for some pointȳ ∈ <p. Therefore, limkyk = ȳ. We will first show thatȳ ∈ Y .

Consider the sequence{λk}. If {λk} contains a subsequence consisting entirely
of zeros, then, from stepk.1 of the algorithm and the fact thatyk ∈ Hk ⊆ H 0 for
all k, a corresponding subsequence of points from{yk} will lie entirely in Y , so that
ȳ ∈ Y will hold.

Now assume that{λk} contains no subsequence of zeros. We may then assume
for notational simplicity thatλk > 0 for all k. From stepsk.1,k.2 andk.4, for each
k, wk, λk andu = uk belong to the compact sets∂Y, {t ∈ <|0 6 t 6 1}, and
{u ∈ <p|u > 0, u1+ u2+ · · · + up = 1}, respectively. Therefore, we may assume
that ask → ∞, wk → w̄ ∈ ∂Y , λk → λ̄, where 06 λ̄ 6 1, anduk → ū, where
ū > 0 andū1+ ū2+ · · · + ūp = 1. By stepk.2, w̄ = λ̄(yI − ȳ)+ ȳ. Sincew̄ ∈ ∂Y
andyI /∈ ∂Y , this implies that̄λ 6= 1. In addition, this equation implies that

(ȳ − w̄) = [λ̄/(1− λ̄)](w̄ − yI ). (38)

From Theorem 3.1(b) it is easy to see that〈ū, y − w̄〉 > 0 for all y ∈ Y .
Furthermore, it is a simple exercise to show that, as a result,

〈ū, yI − w̄〉 > 0. (39)

From Theorem 3.1(c), we see that

〈ū, ȳ − w̄〉 6 0. (40)

By using stepsk.5 andk.7 of the algorithm and the fact that{Hk} is nested,
whereyk ∈ Hk for all k, it is easy to show that〈ū, ȳ − w̄〉 > 0. Combined with
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(40), this shows that〈ū, ȳ − w̄〉 = 0. Using (38), we obtain that

〈ū, ȳ − w̄〉 = [λ̄/(1− λ̄)]〈ū, w̄ − yI 〉.

By (39), since〈ū, ȳ − w̄〉 = 0, this implies that̄λ = 0. As a result, sincēw =
λ̄(yI − ȳ)+ ȳ, we see that̄w = ȳ. Sincew̄ ∈ Y , this shows that̄y ∈ Y .

Having shown that̄y ∈ Y , we now show that̄y is an optimal solution to problem
(PY ). There are two cases to consider. Either (1) for some subsequence of{Hk},
Case 1 holds in stepk.7 or (2) for some subsequence of{Hk}, Case 2 holds in step
k.7.

Case (1): Assume that Case 1 in stepk.7 holds for some subsequence of{Hk}.
Then we may assume, without loss of generality, that this case holds for each
element of{Hk}. Suppose thatk > 1. LetHk = {h ∈ <p|h1

k 6 h 6 h2
k}. Then,

from stepsk.7 andk.9,h1
k = yk , L̂B(Hk) = g(h1

k), andLB(Hk) > g(h1
k). Since

the sequence{LB(Hk)} can be shown to be nondecreasing and bounded above by
φ, and since, by Theorem 3.2, limk H k = limk y

k = ȳ, this implies that

φ > lim
k
LB(Hk) > lim

k
g(yk) = g(ȳ).

Therefore,g(ȳ) 6 φ. From Theorem 2.2, sincēy ∈ Y , it follows thatg(ȳ) = φ

andȳ is an optimal solution for problem (PY ).
Case (2): Assume that Case 2 in stepk.7 holds for some subsequence of{Hk}.

Then we may assume, without loss of generality, that this case holds for each
element of{Hk}. Assumek > 1, and letHk = {h ∈ <p|h1,k 6 h 6 h2,k}.
From stepk.9 and Case 2 of stepk.7,

LB(Hk) > L̂B(Hk) = q(yk),
where, by (19)–(21),

q(yk) = max


p∑
j=1

 p∏
i=1
i 6=j

(h1,k)i

 ykj − (p − 1)
p∏
i=1

(h1,k)i,

p∑
j=1

 p∏
i=1
i 6=j

(h2,k)i

 ykj − (p − 1)
p∏
i=1

(h2,k)i

 .
Since limk H k = limk y

k = ȳ and{LB(Hk)} is a nondecreasing sequence bounded
above byφ, this implies that

φ > lim
k
LB(Hk) > lim

k
q(yk),
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where

lim
k
q(yk) = max


p∑
j=1

(
p∏
i=1

ȳi

)
− (p − 1)

(
p∏
i=1

ȳi

)
,

p∑
j=1

(
p∏
i=1

ȳi

)
− (p − 1)

(
p∏
i=1

ȳi

)
=

p∏
i=1

ȳi

= g(ȳ).

Therefore,g(ȳ) 6 φ. From Theorem 2.2, sincēy ∈ Y , it follows thatg(ȳ) = φ

andȳ is an optimal solution for problem (PY ).
Notice that in both Case (1) and Case (2),

φ > lim
k
LB(Hk) > g(ȳ) = φ.

Therefore,

lim
k
LB(Hk) = φ.

Now let ŵ be an accumulation point ofwk. Then, since limk wk = w̄, ŵ = w̄.
Furthermore, sincēw = ȳ, w̄ = ŵ is an optimal solution for problem (PY ).

From stepk.2, for eachk > 1,g(wk) > UBk. From the same step, sincewk ∈ Y
for all k, {UBk} is a nonincreasing sequence bounded below byφ. The latter two
statements together imply that

lim
k
g(wk) > lim

k
UBk > φ.

Since limkwk = w̄ andw̄ is an optimal solution for problem (PY ), this implies that

φ = g(w̄) > lim
k
UBk > φ.

Therefore,φ = limk UBk, and the proof is complete. 2
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